
1/29/2004 1

Mitigations for Low-Level Coding Vulnerabilities:
Incomparability and Limitations

Jonathan Pincus and Brandon Baker

Microsoft Research
{jpincus, babaker}@microsoft.com

Abstract

Exploits of vulnerabilities due to low-level coding
defects such as buffer overruns and integer overflows
are a major source of security problems. Mitigation
techniques attempt to limit damage from these
vulnerabilities. While many such techniques have
been developed and deployed, work to date has
proceeded in a haphazard fashion. A more
structured approach to the problem requires the
understanding between vulnerabilities, exploits, and
mitigations. Multiple exploit techniques can apply to
any individual vulnerability, and mitigations focus
either on the underlying defects or directly on
specific exploits. We reduce all published exploits to
combinations of three primitive techniques, and
provide a taxonomy of mitigation techniques. Using
these taxonomies, we show that mitigation techniques
are incomparable: each category prevents some
exploits not addressed by other. No combination of
currently-deployed mitigation techniques defeats all
currently-known exploits.

1 Introduction

Security vulnerabilities related to low-level

coding defects such as buffer overruns and integer
overflows account for the largest share of CERT
advisories as well as high-profile worms from the
original Internet Worm through Blaster. When a
vulnerabilitiy is discovered, malicious crackers
devise exploits that take advantage of the
vulnerability to attack a system. In parallel, software
providers issue patches, which remove the
vulnerability by fixing the underlying defect.
Systems are protected if the patch is installed before
they are attacked. As a way of providing additional
protection to un-patched systems, software providers
are increasingly deploying technologies that attempt
to mitigate the effect of such vulnerabilities –
typically by reducing the consequences of an attack
from “elevation of privilege” to “denial of service”.
While many such mitigation techniques have been
developed, there are known attacks on all mitigations.

Attackers exploit these vulnerabilities by
controlling the value in one or more memory
locations and thus modifying the program’s behavior.

All published exploits reduce to sequences of one or
more exploit primitives: modifying an instruction,
modifying a data value, or modifying an address.
The popular code injection style of exploits, for
example, involves at least two primitives: insertion of
a sequence of instructions into the program's
memory, followed by modification of an address so
that control is transferred to the newly-inserted
instructions. Variations may involve additional steps,
for example modifying an address to a subsequent
assignment to modify an additional memory location.

One category of mitigation techniques attempts to
prevent (or, alternatively, to detect) defects.
Techniques focusing on defects are effective against
all possible exploits of the defect. Other categories
of mitigation techniques, by contrast, attempt to
prevent or detect specific exploit primitives. A final
category attempts to detect execution of injected
code.

A key observation is that multiple exploit
techniques are possible for most security defects. As
a result, it is often easy for attackers to defeat exploit-
focused mitigations.

All widely-used categories of mitigation
techniques are “incomparable”: for any two
categories of mitigations M1 and M2, there are at least
some exploits prevented by M1 that are not prevented
by M2, and vice versa. The combination of multiple
mitigation techniques is a natural response to this
incomparability; and indeed, some obviously-
synergistic techniques are frequently combined in
practice. Unfortunately, broadly-deployed
combinations of mitigations still fail to prevent some
exploit techniques. Such incomplete combinations
still leave the system vulnerable to exploitation.

The major contributions of this paper are
• Identification of three primitive exploit

techniques which underlie all published
exploits of low-level coding defects

• A taxonomy of mitigation techniques that
distinguishes between exploit- and defect-
focused mitigations.

• A demonstration of the incomparability of
existing mitigation techniques.

• A demonstration that no combination of
currently-deployed mitigation techniques
stops all known exploit techniques.

1/29/2004 2

Section 2 and 3 of the paper discuss exploits and
mitigations, respectively. Section 4 discusses the
incomparability of mitigations, and section 5
discusses the effectiveness of mitigation techniques.
We close with discussions of future and related work.

2 Exploits

An exploit is the means by which an attacker can

take advantage of a vulnerability. An individual
exploit is an instance of a more general exploit
technique. An exploit can then be coupled with a
payload (often referred to as a shellcode) to create
malicious code.

In this paper, we focus on exploit techniques for
vulnerabilities caused by low-level C/C++ coding
defects such as buffer over- and under-runs, integer
overflows and size mismatches, format string bugs,
and double frees (see [Hogl] for definitions and
examples of these defects).

An attacker can exploit such a vulnerability to
achieve an elevation of privilege by controlling the
values in one or more memory locations L at a point
in the program’s execution P. Table 1 informally
describes some L/P pairs that are particularly
popular. The attacker can achieve this control via a
sequence of one or more primitive operations which
control the contents of memory locations. We further
describe primitives in terms of what data is
controlled: instructions, data values, or addresses.
For example, the exploit used by the Internet Worm
reduces to two such operations: storing a sequence of
instructions (in a stack buffer), and then modifying

the saved return address to point to that buffer. When
program execution reached the return instruction,
control was transferred to the stack buffer, and then
the new instructions were executed.

The most straightforward approach to controlling
the value in a memory location is for the attacker to
modify it. Exploits for uninitialized variables, race
conditions and usages of freed memory also typically
involve alternative approaches to control. For
uninitialized variables, for example, the attacker must
somehow influence the initial (“garbage”) value of
the uninitialized location.

The exploit becomes effective at program point P,
but operations modifying values in L typically occur
at some earlier program point P'. For the Internet
Worm exploit, P' is where the buffer is overrun (and
the values in L are set), and P is when the return
instruction is actually executed. More complex
exploits may rely on setting multiple locations at
multiple program points. If program execution
prevents P from being reached, or modifies the values
in L, the exploit will not succeed.

Behavior of the program may limit the attacker's
control over the value(s) being placed in L. In some
cases, input may be filtered or transformed; in other
cases, the defect itself may restrict the attacker’s
control (for example, to a maximum number of
bytes). We ignore this additional complexity in this
paper.

Although most real-world exploits involve
multiple operations, it is instructive to consider the
individual primitives in more detail.

Table 1: Popular location/program point pairs to control

Location Program Point Reason
Boolean (or bit) used to determine
whether security checks must be
provided

when the value is tested disable security check

"checksum" or "cookie" value before the value is tested defeat self-checking code
non-const pointer before an assignment via that

pointer
use the assignment to control some
other location

Return address (stored on stack on
x86)

before the function returns change program flow by returning to an
unexpected location (e.g., code supplied
by the attacker)

Function pointer before a call through that pointer change program flow
vtbl pointer before a virtual function call change the computation of which

function to call, thus changing program
flow

1/29/2004 3

2.1 Instructions
Modifying a program’s instructions can obviously

change its behavior. For example, changing a jne
instruction to a jeq effectively reverses the meaning
of a comparison; if the comparison relates to (for
example) checking passwords for validity, such a
change to an instruction could allow access to any
user with an invalid password.

[Hogl] briefly mentions such an exploit:
modifying an opcode for a jmp instruction stored as
part of a “jump table”. Direct applications of this
technique are typically infeasible because of an
inherent mitigation provided in operating systems
and chip architectures commonly in use today: the
instruction stream of a program is typically non-
writable after it is loaded.

2.2 Data values
A powerful, but tricky, form of exploit involves

controlling a data value that is used in a security-
critical decision. A classic 1992 NFS exploit [XFor]
of an sized integer mismatch involved passing a UID
(user ID) in which the low 16 bits were zero: the
combination of an initial check of UID != 0 (instead
of the correct (unsigned short)UID == 0) allowed the
attacker root access. [Hogl] illustrates the potential
consequences of such an exploit: changing a single
bit in the memory of a running Microsoft Windows
system can disable all access checking.

Such an exploit is straightforward if a security-
critical value is directly derived from attacker input,
as in the NFS example. Single-operation data-
modification exploits are also possible if a security-
critical variable (local, static, global, or field of a
struct) happens to be adjacent to a buffer that can be
overrun. These may well be relatively rare situations,
however, as there have been no such published
exploits.

2.3 Addresses
An exploit’s control of addresses serves one of

three purposes, depending on how the address is used
in subsequent program execution.

If the address is used as the target of a transfer of
control (for example, a saved return address or a
function pointer address), then controlling the address
effectively changes the program’s control-flow graph
representation. This is often used to transfer control
to a sequence of attacker-controlled instructions
(typically provided by another primitive operation),
or to existing code in the program with attacker-
controlled data (again, typically provided by another
primitive operation).

If the address is used as an lvalue in a subsequent
assignment, then controlling the address effectively
allows the attacker to accomplish an “arbitrary
memory write” and modify other memory locations.
The first step in heap smashing exploits, for example,
modifies pointers used in the internal data structures
of dynamic memory managers such as malloc. As a
result, a subsequent call to free on the memory
whose pointer has been corrupted modifies any four
bytes of memory at a location chosen by the attacker.

More generally, control of an address that is used
as a pointer allows the attacker to control the
program’s access to the pointed-to locations. For
example, modifying an address used as a string
pointer effectively gives the attacker control over the
string itself (without modifying the originally-
pointed-to memory locations).

These latter two techniques combine effectively,
and are thus important for building up more
complicated exploits. The arbitrary memory write in
a heap smashing exploit, for example, can be used to
modify an address used in a subsequent control-flow
transfer, which in turn leads to execution of
instructions inserted by the attacker. Vtable hijacking
exploits use initial control over an address used as a
pointer (to the virtual function table in a C++ object)
to exert indirect control over an address used as a
control-flow target (a virtual function pointer – that
is, an entry in the table).

Most exploit techniques involve the attacker
modifying all the bytes of an address (typically four
or eight bytes, depending on the underlying machine
architecture). In a partial overwrite, by contrast, the
attacker modifies only a subset of the bytes of an
existing address – typically, the one or two least
significant bytes. This effectively allows the attacker
to create a new address relative to the original
address, as opposed to an absolute address that is
possible with full control. Partial overwrites thus
provide an important counter to certain
randomization-based mitigation techniques, a topic
discussed in more detail below.

2.4 Complex exploits
Exploits in the real world typically involve

multiple primitive operations. Some of the most
important categories of exploits include CFG
modification (which in turn decomposes into code
injection and arc injection exploits), pure data
exploits, and multi-defect exploits.

CFG modification includes any technique in
which the attacker inserts a new edge and optionally
block into the program’s control-flow graph. In arc
injection exploits, the attacker only inserts an edge,
inducing a new control transfer to a block already in

1/29/2004 4

Figure 2: simplified version of MS03-026 vulnerability
 extern int global_magic_number;
 void vulnerable(char *input, size_t max_length) {

char buff[MAX_SIZE];
 int *p;
 int i;
 int stack_canary;

 P0: stack_canary = global_magic_number;
 P1: memset(buff, input, max_length); // buffer overrun!

 ...
 P2: *p = i;
 P3: if (stack_canary != global_magic_number)
 // buffer overrun has occurred!
 exit();

P: return;
 }

a program, often calling an existing function with
arguments containing data controlled by the attacker.
In code injection exploits, by contrast, the attacker
inserts a new block as well, by first providing a set of
instructions that are later executed., and additionally
modifying some address so that execution is
transferred to those instructions.

Obviously, all code injection attacks involve at
least two primitive operations. The Internet Worm
introduced stack smashing, the most basic form of
code injection technique (described above); other
variants involve modification of other addresses
(function pointers, exception blocks, frame pointers)
and usage of heap memory rather than stack memory
for the instructions, or an initial integer overflow as
in a recent Linux kernel vulnerability [CERT].

A difficulty with code injection techniques in
general is for the exploit to know the absolute address
A where the instructions are stored. Trampolining is
a clever solution to this in situations where some
register R is known to have an address relative to A.
In this case, the exploit transfers to a (known)
absolute location that has a jump or call instruction
via R, which indirectly causes control to be
transferred to A. Blaster and Slammer both used
exploits involving stack smashing and trampolining.

Arc injection exploits also involve at least two
primitive operations. The basic arc injection exploit
is known as return-into-libc because it involved
transferring control to C standard library routine
system, which executes its argument as a new
process. The actual command line to execute is
provided by the attacker in another primitive
operation. [Wojt] describes the “chaining” of
multiple return-into-libc exploits for a single defect.

Pure data exploits, by contrast, do not involve
any modification of the program’s control flow
graph. For integer overflows and related defects, this

may require only a single primitive operation. For
buffer overruns or double-frees, these typically
involve a sequence of modifications of addresses
used as lvalues or pointers, culminating in the
modification of a data value used in some security-
critical context.

The most exotic published exploits involve
multiple defects. The few existing examples involve
taking advantage of an initial defect to gain
information about the program in order to enable or
improve an exploit of a subsequent defect. [Phen] is
most explicit about this, describing how an
“information leak” defect is used to make a heap
buffer overrun more “stable” (i.e. more consistent).
As more powerful mitigation mechanisms are
deployed, these multi-defect exploits are likely to be a
growth area – since most mitigation techniques
published to date ignore the possibility of multiple
defects.

[Litc] gives an excellent example of a complex
real-world exploit for the MS03-026 vulnerability
using multiple techniques. Figure 2 presents a
simplified version of the code of the vulnerable
program. The stack_canary and
global_magic_number variables are an explicit
(albeit simplified) representation of the stack canary
mitigation mechanism discussed in more detail
below. For the purposes of this section, it is enough
to note that the goal of these fragments is to prevent
execution from reaching program point P if a buffer
overrun has modified the saved return address, which
on an x86 machine is located on the stack directly
after the stack_canary variable.

By taking advantage of the buffer overrun at P1,
Litchfield's exploit first performs the following
primitive operations:

• stores a sequence of instructions in the local
variable buff

1/29/2004 5

• modifies the pointer variable p to point to
the global variable global_magic_number

• sets i to a new value val
• sets stack_canary to a new value val
• modifies the saved return address to contain

the address of a trampoline that will
indirectly transfer execution to buff

When execution reaches P2, the assignment

modifies the value in the global variable
global_magic_number, setting it to val. As a result,
the test at P3 fails to detect the buffer overrun.
Execution thus reaches P, where the return
instruction results in a control-flow transfer to the
saved return value; the trampoline in turn transfers
control to the instructions that have been stored in
buff, and the exploit is successful.

3 Mitigations
The goal of a mitigation technique is to reduce an

elevation of privilege attack to a denial of service:
preferably an orderly termination of the program, but
at worst a crash.

A fundamental distinction in mitigation
techniques is between those focused on defects and
those focused on exploits. Techniques such as run-
time bounds checking that focus on defects have a
major advantage: to the extent they are effective, they
prevent all exploits of those defects. Unfortunately,
almost all of these techniques currently have
sufficiently-high performance and application
compatibility costs that they are not broadly deployed
for C/C++ code. By contrast, many mitigation

techniques focused on preventing exploits have
succeeded in reducing costs to the point where they
are broadly deployable. However, exploit-focused
mitigations do not prevent other exploits of the same
defects, and as a result may not actually provide any
protection in practice if it is easy for attackers to
switch to other exploits.

Defect-focused mitigation techniques can be
further classified in terms of the defects they protect
against. In some cases, a technique protects against
only a subset of defects of a given type. For example,
[Ruwa] explores focusing explicitly on string buffer
overruns (ignoring other buffer overrun possibilities)
as a way of reducing overhead.

Exploit-focused mitigation techniques can further
be divided into those that attempt to interfere with
primitive operations (modification of instructions,
data values, and addresses), and those which focus on
the higher-level techniques of CFG modification.
Some techniques focus only on subsets.

Figure 3 presents this taxonomy of mitigation
techniques graphically, highlighting techniques that
currently have implementations.

Mitigations operate via one of two mechanisms:
preventing the defect or exploit from occurring in the
first place, or detecting the defect or exploit before
any damage has occurred. For example, protecting
the saved return address prevents "stack smashing"
exploits from modifying the return value. Saving an
additional copy of the return address and verifying it
before returning detects the exploit's attempt to
modify it.

Figure 3: Taxonomy of mitigation mechanisms

Key:
Bold: broadly-deployed implementations
Italics: research implementations

Mitigations

Defect-focused Exploit-focused

Buffer
Overruns

… Double
Frees

Strings

Stdlib
functions

Exploit Primitives CFG modification

Instructions Data Addresses Code injection

Heap data
structures

Saved return
addresses

Exception data
structures

Format
Strings

1/29/2004 6

It is important to note that mitigation techniques

potentially have non-trivial costs. Three significant
potential costs include run-time performance,
application compatibility (for example, [Moln]
describes Linux programs that are incompatible with
non-executable stack), and the effect on testing and
supportability. As a result, most implementations of
mitigation mechanisms provide some configuration
option to disable them for particular programs or
libraries.

Implementations of mitigation techniques may
also have limitations (e.g., only covering a subset of
possible defects) or vulnerabilities in their own right,
and attackers may be able to defeat mitigations
exploits by taking advantage of additional
vulnerabilities. For example, a randomization
technique to prevent address modification will be
ineffective if the attacker has a way to obtain the
actual (randomized) layout of the program under
attack – perhaps through an information leak or
incomplete implementation (i.e. only the load
addresses are randomized but stack base and heap
base are not).

3.1 Defect focused techniques
Many defect-focused techniques attack buffer

overruns. Bounds checking ensures that any array
(or, in C/C++, pointer) access to memory region is
between the region's lower and upper bounds.
Bounds checking detects buffer over- and under-runs.
Languages other than C/C++ (e.g., Pascal, Java, C#,
and Ada) often include bounds checking as a feature
of the language. The C/C++ language definition not
only excludes this, but has several constructs in it that
make efficient implementation of bounds checking
extremely difficult. [Ruwa] notes that the best-
known implementation (the Jones-Kelly gcc
extensions described in [Jone]) fails on over 50% of
programs – that is, programs that do not contain
buffer overrun defects terminate abnormally.
Performance overhead for bounds checking is very
high, typically on the order of 100% or more.

As a result, general-purpose bounds-checking is
currently rarely used in practice for C/C++ code.
Several current research projects focus on this
problem. The CCured system described in [Necu]
combines static analysis with run-time checks, but
requires source code and compiler modification.
[Ruwa] explores modifications of the Jones-Kelly
enhancements that succeed on all tested programs
and bring overhead of checks down to 130%., and
also investigates restricting checking only on string
buffers in order to further improve performance.

A substantially more limited, but also lower-
overhead, approach to bounds checking is taken by
libraries such as LibSafe which provide additional
checking for specific “error-prone” C standard library
functions. However, these implementations are
inherently unable to protect against buffer overruns
that do not involve any calls to such functions, and in
many cases have other significant limitations as well.

Several variations of defect detection focused on
format string vulnerabilities are described in
[Cowa01]. The approach implemented in Cowan’s
FormatGuard is to use C preprocessor macros to
remap printf et. al. invocations at compile time to a
variant implementation with an additional parameter
of the number of format specifiers required (based on
the number of arguments provided), and then check
the actual number of specifiers in the string provided
at run-time. [Cowa01] also notes situations in which
this check is insufficient, including a real-world
example of a vulnerable program that provided its
own printf implementation.

Debugging tools such as Rational’s Purify or
Compuware’s BoundsChecker implement defect
detection for uninitialized memory and double-frees
of dynamic memory. However, the typical use model
of these tools means that the overhead of the checks
(frequently up to an order of magnitude slowdown) is
typically too large to be deployable on live systems.

A general issue with these techniques is that by
revealing previously-latent (but unexploitable)
defects, they may have an unfortunate effect on
application compatibility. An extreme case of this is
discussed in [Cowa01]: while the technique of
rejecting any format string with a %n specifier would
indeed prove effective at detecting many format
string defects, it would also prevent valid programs
from running.

3.2 Instructions
An obvious – and very successful – example of a

prevention technique is marking the program’s code
(often known as the text segment) as read-only, as
implemented by most operating systems today. This
means that any direct attempt to modify the
program’s instructions will fail.

The “W^X” mitigation technique implemented in
OpenBSD generalizes this to ensure that any
executable code is marked is read-only. This covers
data that is used as a jump table (thus defeating the
[Hogl] exploit discussed above), and with the
appropriate program modifications can also protect
self-modifying programs. Note, however, that a
more complex exploit that explicitly includes
modifications of memory protection can defeat W^X

1/29/2004 7

as well as the straightforward read-only-text
mitigation.

3.3 Data values
A "stack smashing" exploit of a buffer overrun

defect is able to modify data values of any local
variables laid out above (that is, at a higher memory
location than) the buffer being overrun. Laying out
scalar and pointer variables in any given stack frame
below variables that are likely to be used as buffers
(arrays or structs containing arrays) thus protects the
non-buffer variables in that frame against being
overrun in such stack smashing exploits. ProPolice
and Microsoft's Visual C++ both implement variants
of this approach.

Alternatively, using a separate stack for variables
likely to be used as buffers protects scalar and pointer
variables in other stack frames as well, and protects
against exploits of buffer underruns.

3.4 Addresses
Two interesting mitigation techniques attempt to

to interfering with all address modifications, thus
targeting broad classes of exploits. Simpler
techniques instead attempt to interfere with
modification of specific addresses frequently used in
exploits (for example the saved return value, used in
stack smashing exploits).

Address space layout randomization (ASLR),
originally implemented in the PaX Linux kernel
patch, attempts to make the location of global and
static variables (as well as program text),
unpredictable. To the extent that the randomized
layout is undiscoverable and unpredictable, this has
the effect of interfering with the attacker’s control
over any pointer; even if the attacker can put an
arbitrary value into the pointer location, she cannot
know what it is pointing to. This technique thus
defeats CFG modification exploits, and also multi-
stage exploits involving pointers.

One potential issue with this approach is the
potential for catastrophic failure: if an attacker is able
to determine the layout for a particular process (either
by taking advantage of an additional defect that leads
to an information disclosure, as described in [Bulb],
or perhaps by making use of some support or
debugging facilities or APIs), the randomization
provides no effective protection. In practice, there
may also be implementation weaknesses in which
certain layout that is not randomized provides a back
door to allow the exploit to avoid randomization – for
example, an early version of PaX did not randomize
the location of the Global Object Table, allowing
some straightforward attacks. In addition, “partial
overwrites” (where only certain bytes of a pointer are

modified) can also defeat randomization in some
circumstances.

[Cowa03b] describes pointer encryption, a
technique to protect arbitrary pointers by encrypting
pointer values while in memory and decrypting them
before dereferencing. Assuming the encryption
cannot be defeated, attackers are thus prevented from
controlling a pointer value. As a result, this
technique defeats not only CFG modification
exploits, but also all multi-stage exploits involving
pointers. As of early 2004, no implementation of the
technique has been released, and so there has not
been any detailed analysis of its limitations; as with
randomization, it appears vulnerable to multi-defect
exploits.

3.4.1 Saved return addresses
Because many popular exploit techniques involve

modification of a saved return address, several
mitigation techniques specifically focus on protecting
them. Several authors propose storing return
addresses on a separate stack, thus preventing them
from being modified by stack smashing exploits.
[Dahn] propose moving stack buffers to the heap,
which similarly prevents modification of return
addresses (but in practice provides absolutely no
protection, since attackers can always substitute a
heap smashing exploit instead). An alterative
approach (implemented in the libverify library)
instead focuses on detecting modification of return
addresses by saving a copy at function start and
checking it at function return time.

The best-known example of detecting saved
return address modifications is the “stack canary”
technique, first introduced in [Cowa98] and
implemented in combination with other mitigations
in various products including StackGuard, ProPolice,
and the Microsoft Visual C++ .NET compiler.
Essentially, this approach modifies each function to
put a distinguishable “canary” on the stack directly
before the return value. Before the function returns,
the canary is checked, and if its value has been
modified, the program aborts. Substantial
performance tuning and optimizations reduce the
overhead to an acceptable level. Microsoft’s
Windows Server 2003, various versions of Linux,
and OpenBSD are now all built with some variant of
stack canary checking.

These approaches are extremely effective at
defeating the popular “stack smashing” exploit, and
more generally any exploit that directly uses a buffer
overrun to modify the return address. When other
exploit techniques are possible for a defect, however,
stack canaries by themselves can thus be easily
defeated; see, for example, [Litc].

1/29/2004 8

3.4.2 Heap data structures
The technique of heap meta-data checking

specifically focuses on protecting pointers used in the
implementation of dynamic memory allocators.
Essentially, this technique performs additional checks
of private data structures to ensure that the intended
invariants have not been compromised by some
unexpected modification of memory. This is an
extremely effective mitigation against all published
exploits for double-free defects, as well as the general
“heap smashing” exploits for heap buffer overruns.
However, an insufficient implementation may by
bypassable (for example, [Phen] discusses a
successful search for un-validated meta-data when
exploiting a Cisco IOS heap overrun).

3.4.3 Exception data structures
The SafeSEH mechanisms introduced in

Microsoft VC++ .NET are another example of
detecting modification of specific pointers, in this
case those contained in exception handling structures.
This additional checking defeats the “exception
handling clobbering” attack.

3.5 CFG modification
Much work on mitigations has gone into attempts

to defeat code injection, or more generally CFG
modification exploits. This is not surprising, since
most published exploits, and all high-profile worms
to date, use these techniques. However, it is
important to note that such mitigations provide no
protection against other forms of exploits, and thus
despite many authors' claims these mitigations by
themselves can not fully prevent exploitation of
buffer overruns or other defects.

Making certain areas of memory non-executable,
a collection of techniques collectively referred to as
NX, prevents code-injection (but not arc-injection or
pure data) exploits. A non-executable stack defeats
the standard stack smashing exploit (and more
generally, any code injection exploit where the code
is injected onto the stack): the attempt to execute
instructions the attacker has stored on the stack fails,
leading to program termination and effective
mitigation. Non-executable heaps and the so-called
W^X generalization (no page in memory can be
simultaneously writeable and executable) extend this
to other areas of memory.

Some existing programs do intentionally create
and execute instructions on the heap and stack (e.g.,
JIT compilers, some graphics drivers, and certain
‘thunking’ layers), so there are typically some
application compatibility issues; these typically are
handled by disabling the mitigation for specific
applications.

These are extremely popular mitigation strategies,
due to their effectiveness at preventing the “easiest”
exploits and the belief that they combine well with
other techniques. Many chips provide hardware
support for marking pages or segments non-
executable, which makes this an attractive option
from a performance perspective; Solaris and 64-bit
versions of Microsoft Windows Server 2003 provide
support for NX; OpenBSD 3.3 supports W^X;
patches and third-party products also provide this
support for Linux and Windows XP; and Microsoft
has announced NX support for the upcoming
Windows XP SP2 on CPUs that provide appropriate
levels of hardware support.

Systrace is a mechanism for constraining an
application’s access to the system by restricting what
system calls the application can make. Depending on
the behavior of the program being protected by
systrace, this allows detection of some common code
injection exploits; however, it offers no protection
against arc injection or pure data exploits. Systrace is
commonly viewed as a “second line” of defense that
attempts to limit the damage performed by an exploit
that has succeeded in elevation of privilege.

Program shepherding [Kiri] is a much more
ambitious approach that attempts to prevent all
unexpected control flow transfers – that is, all CFG
modification attacks, specifically including arc
injection as well as code injection. While this
prevents a broader class of exploits, the performance
overhead is potentially more severe, and there are
significant complexities related to exception
handling, function-pointer variables, and self-
modifying code. Currently, this is still a research
technique.

4 Incomparability of
mitigations

Since each mitigation technique adds cost and
complexity to the system, it is obviously desirable to
minimize the number of techniques that are required.
Unfortunately, as we show in this section, all pairs of
well-analyzed existing mitigations are incomparable:
technique A prevents some exploits for some defects
that are not prevented by mitigation B, but mitigation
B prevents some exploits for some defects that are
not prevented by mitigation A.1

1 [The lack of analysis to date of attacks on

program shepherding leaves open the possibility that
it may be strictly stronger than NX.]

1/29/2004 9

Table 4: Incomparable mitigation techniques

Family Classification Example techniques
Defect focused techniques Defect bounds checking, format string

checking, garbage collection
Non-writable code segment Exploit: instruction
local variable protection Exploit: data values

local variable reordering or separate
stack for buffers

return address protection Exploit: saved return addresses stack canaries, separate return value
stack

heap meta-data checking Exploit: heap data structures
general pointer protection Exploit: addresses address space randomization, pointer

encryption
NX (non-executable regions
of memory)

Exploit: code injection

program shepherding Exploit: CFG modification

This result is a consequence of the classification

of mitigation techniques discussed in Section 4. We
first provide a high-level sketch of our approach and
then a more detailed (although still informal)
description.

There are three interesting sub-cases that cover
most pairs of mitigation techniques:

• Defect-focused mitigations are

incomparable with exploit-focused
mitigations.

• Exploit-focused mitigations that defeat one
exploit primitive are incomparable with
exploit-focused mitigations that defeat other
exploit primitives.

• Mitigations that defeat code- and arc-
injection are incomparable with mitigations
that defeat data and instruction modification.

Case-by-case analysis is then required for the

remaining pairs, primarily the multiple families of
mitigations that defeat various address modification
exploits.

4.1 Defect-focused vs. exploit-
focused mitigations

Defect-focused and exploit-focused mitigation
techniques are fundamentally incomparable. A
simple example makes the point intuitively, using
bounds checking as an example of a defect-focused
mitigation technique and NX as an example of an
exploit-focused technique. NX not only prevents
code injection exploits for buffer overrun defects (as
does bounds checking), but also for other kinds of
defects such as format string attacks that are not
addressed by bounds checking. Conversely, bounds
checking prevents other categories of exploits for
buffer overruns that are not addressed by NX. More

generally, bounds checking prevents pure data
exploits of buffer overruns – exploits that are not
prevented by any existing exploit-focused mitigation
technique.

A similar argument can be made for any
combination of a defect-focused and an exploit-
focused mitigation assuming that there are multiple
possible exploit techniques for at least some defects
prevented by the defect-focused mitigation, and the
exploit-focused mitigation applies to at least some
defects of multiple types. These assumptions hold
with respect to the exploit and mitigation techniques
discussed in this paper.

As this example shows, the possibility of
currently-unknown exploit techniques tends to be an
argument for defect-focused mitigations. On the
other hand, there is also a possibility of currently-
unknown defects that are exploitable by existing
exploit techniques; this is an argument in favor the
complementary value of exploit-focused mitigations.

4.2 Exploit-focused mitigations
The incomparability of mitigations that defeat

different exploit primitives is trivial: the sets of
single-operation exploits (that is, exploits in which
the attacker only uses a single primitive operation)
they prevent are by definition disjoint. The
incomparability of mitigations focused on code- and
arc-injection with mitigations focused on data value
or instruction modifications is also immediately
obvious.

We now must proceed to case-by-case analysis of
the remaining pairs of mitigations.

Heap meta-data checking is intuitively
incomparable with return address protection because
they protect disjoint memory locations. Specifically,
heap meta-data checking protects against exploits of
heap buffer overruns and double frees, but not against

1/29/2004 10

stack buffer overruns; return address protection is the
exact opposite.

All published general pointer protection
mitigations are vulnerable to exploits involving an
earlier information disclosure. Conversely, however,
they protect against exploits of all kinds of addresses
(unlike other address protection mitigations) and
against multi-stage pure data exploits (unlike
mitigations that prevent code- and arc-injection).

Program shepherding defeats arc-injection
exploits, unlike NX. Little work has been done
analyzing weaknesses of program shepherding, and
so it is not clear whether the converse also holds. The
prototype implementation of program shepherding
has several known vulnerabilities (limitations on
handling of indirect calls, an internal data structure
that is not protected) that are likely to allow exploits
that would be prevented by NX, but [Kiri] has
sketched extensions that may address this. It is
possible that with sufficiently precise analysis of
indirect jumps (including handling of C++ virtual
functions and exceptions, C longjmps, and re-
analysis after a program’s control-flow graph is
modified at runtime via loading and unloading of
dynamic link libraries) program shepherding may
prove to be strictly stronger than NX. These
solutions have not yet been implemented in practice,
so currently program shepherding is indeed
incomparable with NX, but this may change in the
future.

4.3 Implementation-based
considerations

The discussion above concentrated on the
inherent limitations of the various mitigation
techniques. In practice, the actual implementation of
techniques is also a potentially-important source of
incomparability.

One important instance of this relates to the
difference between mitigations that require
recompilation and those that do not. Currently,
implementations of stack canary and bounds
checking schemes require recompilation, and so do
not provide any protection to software that is not
recompiled. Some implementations of techniques
such as NX and heap meta-data checking, by
contrast, apply at the system wide level, and so have
the potential to protect most un-recompiled
applications as well – although as noted above, some
applications involving on-the-fly code generation
require modification for NX compatibility.

Any implementation may well have limitations.
For example, many stack canary implementations
have optimizations that disable checking on “small”
objects; it is certainly possible to construct situations

in which exploitable buffer overruns occur in those
small objects and the exploit is not detected due to
optimizations. Application compatibility concerns
may also lead to weaknesses; NX schemes, for
example, typically have to provide some backward
compatibility switch for applications that generate
instructions on the fly, and so those applications may
receive less (or no) protection.

Finally, implementations may have weaknesses or
flat-out bugs. Early versions of some stack canary
checks were vulnerable to exploits where the attacker
could guess the canary. [Litc] discusses
implementation weaknesses, since fixed, in
Microsoft’s SafeSEH implementation; and [Bulb]
presents attacks that took advantage of incomplete
randomizations in early versions of PaX.

5 Combinations of mitigations
The most powerful currently-deployed

approaches to mitigation combine multiple
complementary techniques. This is a natural
response to the incomparability of mitigations, and
some combinations are obviously attractive – for
example, stack canaries apply only to stack buffer
overruns of stack memory, and heap meta-data
checking applies only to heap buffer overruns, so the
two are clearly complementary.

More generally, the possibility of implementation
weaknesses is another argument in favor of
combining mitigations. Of course, the additional
costs (including system complexity) of using multiple
mitigation techniques need to be balanced against the
benefits.

Assuming that the techniques being combined are
independent (in the sense that they have no
interactions), a combination of multiple techniques
mitigates an individual vulnerability if any one
technique mitigates it.

Unfortunately, currently-deployed combinations
of mitigation techniques – and more generally, any
combination of currently published mitigations – do
not provide even the weaker level of protection of
preventing all published exploits. It is important to
note that this is not simply a matter of
implementation weaknesses. Pure data exploits of
integer overflows and signed/unsigned mismatches
are simply not addressed by any published mitigation
technique. Pure data exploits of buffer overruns are
only addressed by the defect-oriented technique of
bounds checking, which is not yet widely deployed.

1/29/2004 11

Table 5: Combinations of mitigations and some known unmitigated exploits (ignoring implementation

weaknesses)
Techniques Some known unmitigated exploit techniques
NX + return value protection +
heap meta-data checking

Pure data; some arc injection

return value protection + heap
meta-data checking

Pure data (direct and multi-stage); some multi-stage arc/code injection

return value protection + heap
meta-data checking + variable
reordering + NX

Most pure data; some arc injection

NX + pointer protection Most pure data; arc injection via partial overwrites; using previous
information disclosures vulnerabilities

bounds checking + heap meta-data
checking + format string checking

Some pure data (e.g., for integer overflows, signed/unsigned mismatches,
etc.)

NX + pointer protection + format
string checking + variable
reordering

Some pure data (e.g., for some buffer overruns, integer overflows,
signed/unsigned mismatches, etc.); using previous information disclosures
vulnerabilities

6 Future work
Exploits for race conditions are often viewed as

being a “next wave” of vulnerabilities; conceptually,
these (and the mitigations) should fit cleanly into this
analysis framework. Moving beyond low-level
defects to such higher-level (and non-C/C++)
constructs as script injection and SQL injection, may
require consideration of new exploit techniques;
however, it is interesting to note that this is
essentially a form of instruction modification, just at
a higher level of “instruction”.

Better understanding the impact of actual
implementations of mitigation techniques is likely to
require more precise analysis of the specific
characteristics of exploits and mitigations. One
potential approach is to extend the Dor et. al. memory
model (originally targeted at static analysis of buffer
overrun defects) to the full complexity needed to
consider exploits and mitigations as well.

More fundamentally, an important question not
addressed in this paper is what percentage of
vulnerabilities is exploitable for elevation of privilege
in the presence or absence of specific mitigations.
With respect to known exploit techniques, this
requires estimating what percentage of defects is
amenable to various exploit techniques, and the
effectiveness of various mitigation techniques at
defeating the exploits. This quantification will allow
better understanding of the actual strength of a
system in the presence of combinations of mitigations
– in light of the a well-known truism that “there is no
such thing as perfect security”, do some of the
combinations of mitigations discussed above give
sufficient protection in practice that exploitation of

low-level defects will cease to be a significant
elevation of privilege threat? Combining this
information with cost estimates will also enable more
meaningful cost/benefit tradeoffs between mitigation
techniques.

The specific mitigations discussed in this paper
can be viewed as special cases of more general
“defenses” that include firewalls, intrusion detection
systems, program sandboxing, etc. Mitigations
interfere with exploits by preventing some of the
“environmental conditions” needed for a successful
exploit; so do the general defenses. Combining this
work with cost/benefit analyses such as in [Butl] is a
longer-term goal.

7 Related work
Exploits first received significant attention in

response to the "Internet worm" (also know as the
fingerd worm); [Spaf] is the definitive writeup.
Subsequent work has rarely been published in
traditional journals but is often of very high quality;
[Litc] is a good example. Cowan’s work, especially
[Cowa00, Cowa01], and [Wila] reference many of
the key papers from Phrack and elsewhere. [Hogl] is
a recent book-length publication focused on exploits
and contains significant references. None of these
works reduce exploit techniques to their primitives.

To date, there have been few significant efforts at
collecting, let alone classifiying, mitigations.
[Cowa00] discusses a handful of techniques. [Wila]
provides a simple partial taxonomy of several
mitigations focused on CFG-modification; more
importantly, this work compares the effectiveness of
several mitigation techniques against a testbed of
roughly 20 “attack patterns” (exploit techniques, in

1/29/2004 12

our terminology), and finds that none are particularly
effective – all miss at least 50% of the attacks. As
with exploits, there is substantial work on individual
mitigation techniques. Crispin Cowan's StackGuard
[Cowa98] and SolarDesigner's non-executable stack
Linux kernel patch (described in [Wojt]) were
amongst the first high-profile mitigation approaches.

Research continues on more ambitious mitigation
techniques. Reducing overhead to an acceptable level
is a major focus defect-focused mitigations
concentrating on buffer overruns; [Ruwa] and [Necu]
are tood examples of this. Program shepherding
[Kiri] and pointer encryption [Cowa03b], by contrast,
explore more powerful exploit-focused mitigations.

Static analysis of defects is a related field;
obviously, removing defects is even better than
mitigating the resulting vulnerability; [Cowa03a]
includes discussion of static analysis tools. [Xie],
[Dor] and others are good examples of more recent
work. Unfortunately, none of these tools find all the
defects in real cases; for example, while many of the
tools have found both previously-reported and (in
some cases) new buffer overrun defects in Sendmail,
additional defects have since been found via manual
inspection. Recent work such as CCured [Necu]
combines static and dynamic techniques, but requires
modification to the source code, and has not yet been
broadly deployed.

8 References

[Bulb] Bulba and Kil3r, “Bypassing Stackguard and

Stackshield”, Phrack 56, 2000.
[CERT] “Linux kernel do_brk() function contains

integer overflow”, CERT/CC Vulnerability Note
VU#301156, December, 2003.

[Cowa98] C. Cowan et. al., StackGuard: Automatic
Adaptive Detection and Prevention of Buffer
overrun attacks, 1998.

[Cowa00] C. Cowan et. al., “Buffer Overflows:
Attacks and Defenses for the Vulnerability of the
Decade”. In DARPA Information Survivability
Conference and Expo (DISCEX), January 2000.

[Cowa01] C. Cowan et. al., “FormatGuard:
Automatic from printf Format String
Vulnerabilties”. In Proceedings of the 2001
USENIX Security Symposium, August 2001.

[Cowa03a] C. Cowan, "Software Security for Open
Source Systems",IEEE Security & Privacy
Magazine, February 2003.

[Cowa03b] C. Cowan et. al., “PointGuard: Protecting
Pointers from Buffer Overrun Vulnerabilties”. In
Proceedings of the 2003 USENIX Security
Symposium, August 2003.

[Dahn] C. Dahn and S. Mancoridis, “Using Program
Transformation to Secure C Programs Against

Buffer Overflows”, In IEEE Proceedings of the
2003 Working Conference in Reverse
Engineering (WCRE'03), November 2003.

[Dor] N. Dor, M. Rodeh, and M. Sagiv, “CSSV:
Towards a Realistic Tool for Statically Detecting
All Buffer Overruns in C”, in Proceedings of the
ACM SIGPLAN 2003 Conference on
Programming Language Design and
Implementation (PLDI03), June 2003.

[Hogl] G. Hoglund and G. McGraw Exploiting
Software: How to Break Code, Addison Wesley,
2004.

[Kiri] V. Kiriansky et. al., “Secure execution via
program shepherding”, In Proceedings of the
2002 USENIX Security Symposium, August 2002.

[Litc] D. Litchfield, Defeating the Stack Buffer
Overflow Prevention Mechanism of Microsoft
Windows 2003 Server, 2003.
http://www.nextgenss.com/papers/defeating-
w2k3-stack-protection.pdf

[Moln] I. Molnar, "Exec Shield", new Linux security
feature, 2003. http://lists.insecure.org/lists/linux-
kernel/2003/May/0371.html

[Necu] G. Necula et. al., “CCured in the Real
World,” in Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language
Design and Implementation (PLDI03), June 2003.

[Phen] Phenolit, Ultima Ratio: A Remote Cisco IOS
Exploit, 2002.
http://www.phenoelit.de/ultimaratio/index.html.

[Ruwa] O. Ruwase and M. S. Lam, “A Practical
Dynamic Buffer Overflow Detector”, In
Proceedings of the 11th Annual Network and
Distributed System Security Symposium, February
2004.

[Spaf] E. Spafford. The Internet Worm Program: An
Analysis . Technical Report CSD-TR-823.
Department of Computer Science, Purdue
University. November 1988.

[Xie] Y. Xie and D. Engler, “Using Redundancies to
Find Errors”, to appear in IEEE Transactions on
Software Engineering.

[Wila] J. Wilander and M. Kamkar, “A Comparison
of Publicly Available Tools for Dynamic Buffer
Overflow Prevention”, in Proceedings of the 10th
Network and Distributed System Security
Symposium, November 2003.

[Wojt] R. Wojtczuk, Defeating Solar Designer's Non-
executable Stack Patch, 1998.
http://www.insecure.org/sploits/non-
executable.stack.problems.html

