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Abstract 

Exploits of vulnerabilities due to low-level coding 
defects such as buffer overruns and integer overflows 
are a major source of security problems. Mitigation 
techniques attempt to limit damage from these 
vulnerabilities.  While many such techniques have 
been developed and deployed, work to date has 
proceeded in a haphazard fashion.  A more 
structured approach to the problem requires the 
understanding between vulnerabilities, exploits, and 
mitigations. Multiple exploit techniques can apply to 
any individual vulnerability, and mitigations focus 
either on the underlying defects or directly on 
specific exploits.  We reduce all published exploits to 
combinations of three primitive techniques, and 
provide a taxonomy of mitigation techniques.  Using 
these taxonomies, we show that mitigation techniques 
are incomparable: each category prevents some 
exploits not addressed by other. No combination of 
currently-deployed mitigation techniques defeats  all 
currently-known exploits.   

 

1 Introduction 
 
Security vulnerabilities related to low-level 

coding defects such as buffer overruns and integer 
overflows account for the largest share of CERT 
advisories as well as high-profile worms from the 
original Internet Worm through Blaster.  When a 
vulnerabilitiy is discovered, malicious crackers 
devise exploits that take advantage of the 
vulnerability to attack a system.  In parallel, software 
providers issue patches, which remove the 
vulnerability by fixing the underlying defect.  
Systems are protected if the patch is installed before 
they are attacked.  As a way of providing additional 
protection to un-patched systems, software providers 
are increasingly deploying technologies that attempt 
to mitigate the effect of such vulnerabilities – 
typically by reducing the consequences of an attack 
from “elevation of privilege” to “denial of service”.  
While many such mitigation techniques have been 
developed, there are known attacks on all mitigations.   

Attackers exploit these vulnerabilities by 
controlling the value in one or more memory 
locations and thus modifying the program’s behavior.  

All published exploits reduce to sequences of one or 
more exploit primitives: modifying an instruction, 
modifying a data value, or modifying an address.  
The popular code injection style of exploits, for 
example, involves at least two primitives: insertion of 
a sequence of instructions into the program's 
memory, followed by modification of an address so 
that control is transferred to the newly-inserted 
instructions.  Variations may involve additional steps, 
for example modifying an address to a subsequent 
assignment to modify an additional memory location.   

One category of mitigation techniques attempts to 
prevent (or, alternatively, to detect) defects.  
Techniques focusing on defects are effective against 
all possible exploits of the defect.  Other categories 
of mitigation techniques, by contrast, attempt to 
prevent or detect specific exploit primitives.  A final 
category attempts to detect execution of injected 
code.   

A key observation is that multiple exploit 
techniques are possible for most security defects.  As 
a result, it is often easy for attackers to defeat exploit-
focused mitigations.   

All widely-used categories of mitigation 
techniques are “incomparable”: for any two 
categories of mitigations M1 and M2, there are at least 
some exploits prevented by M1 that are not prevented 
by M2, and vice versa.  The combination of multiple 
mitigation techniques is a natural response to this 
incomparability; and indeed, some obviously-
synergistic techniques are frequently combined in 
practice.  Unfortunately, broadly-deployed 
combinations of mitigations still fail to prevent some 
exploit techniques.  Such incomplete combinations 
still leave the system vulnerable to exploitation.  

The major contributions of this paper are 
•  Identification of three primitive exploit 

techniques which underlie all published 
exploits of low-level coding defects 

•  A taxonomy of mitigation techniques that 
distinguishes between exploit- and defect-
focused mitigations. 

•  A demonstration of the incomparability of 
existing mitigation techniques. 

•  A demonstration that no combination of 
currently-deployed mitigation techniques 
stops all known exploit techniques.  
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Section 2 and 3 of the paper discuss exploits and 
mitigations, respectively.  Section 4 discusses the 
incomparability of mitigations, and section 5 
discusses the effectiveness of mitigation techniques.  
We close with discussions of future and related work. 

 

2 Exploits 
 
An exploit is the means by which an attacker can 

take advantage of a vulnerability.  An individual 
exploit is an instance of a more general exploit 
technique.  An exploit can then be coupled with a 
payload (often referred to as a shellcode) to create 
malicious code. 

In this paper, we focus on exploit techniques for 
vulnerabilities caused by low-level C/C++ coding 
defects such as buffer over- and under-runs, integer 
overflows and size mismatches, format string bugs, 
and double frees (see [Hogl] for definitions and 
examples of these defects). 

An attacker can exploit such a vulnerability to 
achieve an elevation of privilege by controlling the 
values in one or more memory locations L at a point 
in the program’s execution P.  Table 1 informally 
describes some L/P pairs that are particularly 
popular. The attacker can achieve this control via a 
sequence of one or more primitive operations which 
control the contents of memory locations.  We further 
describe primitives in terms of what data is 
controlled: instructions, data values, or addresses.  
For example, the exploit used by the Internet Worm 
reduces to two such operations: storing a sequence of 
instructions (in a stack buffer), and then modifying 

the saved return address to point to that buffer.  When 
program execution reached the return instruction, 
control was transferred to the stack buffer, and then 
the new instructions were executed. 

The most straightforward approach to controlling 
the value in a memory location is for the attacker to 
modify it.  Exploits for uninitialized variables, race 
conditions and usages of freed memory also typically 
involve alternative approaches to control.  For 
uninitialized variables, for example, the attacker must 
somehow influence the initial (“garbage”) value of 
the uninitialized location. 

The exploit becomes effective at program point P, 
but operations modifying values in L typically occur 
at some earlier program point P'.  For the Internet 
Worm exploit, P' is where the buffer is overrun (and 
the values in L are set), and P is when the return 
instruction is actually executed.  More complex 
exploits may rely on setting multiple locations at 
multiple program points.  If program execution 
prevents P from being reached, or modifies the values 
in L, the exploit will not succeed.   

Behavior of the program may limit the attacker's 
control over the value(s) being placed in L.  In some 
cases, input may be filtered or transformed; in other 
cases, the defect itself may restrict the attacker’s 
control (for example, to a maximum number of 
bytes).  We ignore this additional complexity in this 
paper. 

Although most real-world exploits involve 
multiple operations, it is instructive to consider the 
individual primitives in more detail.   

 

 
Table 1: Popular location/program point pairs to control 

Location Program Point Reason 
Boolean (or bit) used to determine 
whether security checks must be 
provided 

when the value is tested disable security check 

"checksum" or "cookie" value before the value is tested defeat self-checking code 
non-const pointer before an assignment via that 

pointer 
use the assignment to control some 
other location 

Return address (stored on stack on 
x86) 

before the function returns change program flow by returning to an 
unexpected location (e.g., code supplied 
by the attacker) 

Function pointer before a call through that pointer change program flow 
vtbl pointer before a virtual function call change the computation of which 

function to call, thus changing program 
flow 
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2.1 Instructions 
Modifying a program’s instructions can obviously 

change its behavior.  For example, changing a jne 
instruction to a jeq effectively reverses the meaning 
of a comparison; if the comparison relates to (for 
example) checking passwords for validity, such a 
change to an instruction could allow access to any 
user with an invalid password. 

[Hogl] briefly mentions such an exploit: 
modifying an opcode for a jmp instruction stored as 
part of a “jump table”.  Direct applications of this 
technique are typically infeasible because of an 
inherent mitigation provided in operating systems 
and chip architectures commonly in use today: the 
instruction stream of a program is typically non-
writable after it is loaded.   

2.2 Data values 
A powerful, but tricky, form of exploit involves 

controlling a data value that is used in a security-
critical decision.  A classic 1992 NFS exploit [XFor] 
of an sized integer mismatch involved passing a UID 
(user ID) in which the low 16 bits were zero:  the 
combination of an initial check of UID != 0 (instead 
of the correct (unsigned short)UID == 0) allowed the 
attacker root access. [Hogl] illustrates the potential 
consequences of such an exploit: changing a single 
bit in the memory of a running Microsoft Windows 
system can disable all access checking. 

Such an exploit is straightforward if a security-
critical value is directly derived from attacker input, 
as in the NFS example.  Single-operation data-
modification exploits are also possible if a security-
critical variable (local, static, global, or field of a 
struct) happens to be adjacent to a buffer that can be 
overrun.  These may well be relatively rare situations, 
however, as there have been no such published 
exploits. 

2.3 Addresses 
An exploit’s control of addresses serves one of 

three purposes, depending on how the address is used 
in subsequent program execution.   

If the address is used as the target of a transfer of 
control (for example, a saved return address or a 
function pointer address), then controlling the address 
effectively changes the program’s control-flow graph 
representation.  This is often used to transfer control 
to a sequence of attacker-controlled instructions 
(typically provided by another primitive operation), 
or to existing code in the program with attacker-
controlled data (again, typically provided by another 
primitive operation). 

If the address is used as an lvalue in a subsequent 
assignment, then controlling the address effectively 
allows the attacker to accomplish an “arbitrary 
memory write” and modify other memory locations.  
The first step in heap smashing exploits, for example, 
modifies pointers used in the internal data structures 
of dynamic memory managers such as malloc.  As a 
result, a subsequent call to free on the memory 
whose pointer has been corrupted modifies any four 
bytes of memory at a location chosen by the attacker. 

More generally, control of an address that is used 
as a pointer allows the attacker to control the 
program’s access to the pointed-to locations.  For 
example, modifying an address used as a string 
pointer effectively gives the attacker control over the 
string itself (without modifying the originally-
pointed-to memory locations).   

These latter two techniques combine effectively, 
and are thus important for building up more 
complicated exploits.  The arbitrary memory write in 
a heap smashing exploit, for example, can be used to 
modify an address used in a subsequent control-flow 
transfer, which in turn leads to execution of 
instructions inserted by the attacker.  Vtable hijacking 
exploits use initial control over an address used as a 
pointer (to the virtual function table in a C++ object) 
to exert indirect control over an address used as a 
control-flow target (a virtual function pointer – that 
is, an entry in the table). 

Most exploit techniques involve the attacker 
modifying all the bytes of an address (typically four 
or eight bytes, depending on the underlying machine 
architecture).  In a partial overwrite, by contrast, the 
attacker modifies only a subset of the bytes of an 
existing address – typically, the one or two least 
significant bytes.  This effectively allows the attacker 
to create a new address relative to the original 
address, as opposed to an absolute address that is 
possible with full control.  Partial overwrites thus 
provide an important counter to certain 
randomization-based mitigation techniques, a topic 
discussed in more detail below. 

2.4 Complex exploits 
Exploits in the real world typically involve 

multiple primitive operations.  Some of the most 
important categories of exploits include CFG 
modification (which in turn decomposes into code 
injection and arc injection exploits), pure data 
exploits, and multi-defect exploits.  

CFG modification includes any technique in 
which the attacker inserts a new edge and optionally 
block into the program’s control-flow graph.  In arc 
injection exploits, the attacker only inserts an edge, 
inducing a new control transfer to a block already in  
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Figure 2: simplified version of MS03-026 vulnerability 
 extern int global_magic_number; 
 void vulnerable(char *input, size_t max_length) { 

char buff[MAX_SIZE]; 
  int *p; 
  int i; 
  int stack_canary; 
 
 P0: stack_canary = global_magic_number; 
 P1: memset(buff, input, max_length);  // buffer overrun!       

  ... 
 P2:   *p = i; 
 P3: if (stack_canary != global_magic_number) 
   // buffer overrun has occurred! 
   exit(); 

P: return; 
 }

a program, often calling an existing function with 
arguments containing data controlled by the attacker.  
In code injection exploits, by contrast, the attacker 
inserts a new block as well, by first providing a set of 
instructions that are later executed.,  and additionally 
modifying some address so that execution is 
transferred to those instructions.   

Obviously, all code injection attacks involve at 
least two primitive operations.  The Internet Worm 
introduced stack smashing, the most basic form of 
code injection technique (described above); other 
variants involve modification of other addresses 
(function pointers, exception blocks, frame pointers) 
and usage of heap memory rather than stack memory 
for the instructions, or an initial integer overflow as 
in  a recent Linux kernel vulnerability [CERT].   

A difficulty with code injection techniques in 
general is for the exploit to know the absolute address 
A where the instructions are stored.  Trampolining is 
a clever solution to this in situations where some 
register R is known to have an address relative to A.  
In this case, the exploit transfers to a (known) 
absolute location that has a jump or call instruction 
via R, which indirectly causes control to be 
transferred to A.  Blaster and Slammer both used 
exploits involving stack smashing and trampolining.   

Arc injection exploits also involve at least two 
primitive operations.  The basic arc injection exploit 
is known as return-into-libc because it involved 
transferring control to C standard library routine 
system, which executes its argument as a new 
process.  The actual command line to execute is 
provided by the attacker in another primitive 
operation.  [Wojt] describes the “chaining” of 
multiple return-into-libc exploits for a single defect.   

Pure data exploits, by contrast, do not involve 
any modification of the program’s control flow 
graph.  For integer overflows and related defects, this 

may require only a single primitive operation.  For 
buffer overruns or double-frees, these typically 
involve a sequence of modifications of addresses 
used as lvalues or pointers, culminating in the 
modification of a data value used in some security-
critical context. 

The most exotic published exploits involve 
multiple defects.  The few existing examples involve 
taking advantage of an initial defect to gain 
information about the program in order to enable or 
improve an exploit of a subsequent defect.  [Phen] is 
most explicit about this, describing how an 
“information leak” defect is used to make a heap 
buffer overrun more “stable” (i.e. more consistent).  
As more powerful mitigation mechanisms are 
deployed, these multi-defect exploits are likely to be a 
growth area – since most mitigation techniques 
published to date ignore the possibility of multiple 
defects. 

[Litc] gives an excellent example of a complex 
real-world exploit for the MS03-026 vulnerability 
using multiple techniques.  Figure 2 presents a 
simplified version of the code of the vulnerable 
program. The stack_canary and 
global_magic_number variables are an explicit 
(albeit simplified) representation of the stack canary 
mitigation mechanism discussed in more detail 
below.  For the purposes of this section, it is enough 
to note that the goal of these fragments is to prevent 
execution from reaching program point P if a buffer 
overrun has modified the saved return address, which 
on an x86 machine is located on the stack directly 
after the stack_canary variable. 

By taking advantage of the buffer overrun at P1, 
Litchfield's exploit first performs the following 
primitive operations: 

•  stores a sequence of instructions in the local 
variable buff 
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•  modifies the pointer variable p to point to 
the global variable global_magic_number 

•  sets i to a new value val  
•  sets stack_canary to a new value val  
•  modifies the saved return address to contain 

the address of a trampoline that will 
indirectly transfer execution to buff 

 
When execution reaches P2, the assignment 

modifies the value in the global variable 
global_magic_number, setting it to val.  As a result, 
the test at P3 fails to detect the buffer overrun.  
Execution thus reaches P, where the return 
instruction results in a control-flow transfer to the 
saved return value; the trampoline in turn transfers 
control to the instructions that have been stored in 
buff, and the exploit is successful.  

3 Mitigations 
The goal of a mitigation technique is to reduce an 

elevation of privilege attack to a denial of service: 
preferably an orderly termination of the program, but 
at worst a crash.   

A fundamental distinction in mitigation 
techniques is between those focused on defects and 
those focused on exploits.  Techniques such as run-
time bounds checking that focus on defects have a 
major advantage: to the extent they are effective, they 
prevent all exploits of those defects.  Unfortunately, 
almost all of these techniques currently have 
sufficiently-high performance and application 
compatibility costs that they are not broadly deployed 
for C/C++ code.  By contrast, many mitigation 

techniques focused on preventing exploits have 
succeeded in reducing costs to the point where they 
are broadly deployable.  However, exploit-focused 
mitigations do not prevent other exploits of the same 
defects, and as a result may not actually provide any 
protection in practice if it is easy for attackers to 
switch to other exploits.   

Defect-focused mitigation techniques can be 
further classified in terms of the defects they protect 
against.  In some cases, a technique protects against 
only a subset of defects of a given type. For example, 
[Ruwa] explores focusing explicitly on string buffer 
overruns (ignoring other buffer overrun possibilities) 
as a way of reducing overhead. 

Exploit-focused mitigation techniques can further 
be divided into those that attempt to interfere with 
primitive operations (modification of instructions, 
data values, and addresses), and those which focus on 
the higher-level techniques of CFG modification.  
Some techniques focus only on subsets.   

Figure 3 presents this taxonomy of mitigation 
techniques graphically, highlighting techniques that 
currently have implementations.   

Mitigations operate via one of two mechanisms: 
preventing the defect or exploit from occurring in the 
first place, or detecting the defect or exploit before 
any damage has occurred.  For example, protecting 
the saved return address prevents "stack smashing" 
exploits from modifying the return value.  Saving an 
additional copy of the return address and verifying it 
before returning detects the exploit's attempt to 
modify it. 

 
Figure 3: Taxonomy of mitigation mechanisms  

 

Key: 
Bold: broadly-deployed implementations 
Italics: research implementations 

Mitigations 

Defect-focused Exploit-focused 

Buffer 
Overruns 

… Double 
Frees 

Strings 

Stdlib 
functions 

Exploit Primitives CFG modification 

Instructions Data Addresses Code injection 

Heap data 
structures 

Saved return 
addresses 

Exception data  
structures 

Format 
Strings 
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It is important to note that mitigation techniques 

potentially have non-trivial costs.  Three significant 
potential costs include run-time performance, 
application compatibility (for example, [Moln] 
describes Linux programs that are incompatible with 
non-executable stack), and the effect on testing and 
supportability.  As a result, most implementations of 
mitigation mechanisms provide some configuration 
option to disable them for particular programs or 
libraries. 

Implementations of mitigation techniques may 
also have limitations (e.g., only covering a subset of 
possible defects) or vulnerabilities in their own right, 
and attackers may be able to defeat mitigations 
exploits by taking advantage of additional 
vulnerabilities.  For example, a randomization 
technique to prevent address modification will be 
ineffective if the attacker has a way to obtain the 
actual (randomized) layout of the program under 
attack – perhaps through an information leak or 
incomplete implementation (i.e. only the load 
addresses are randomized but stack base and heap 
base are not). 

3.1 Defect focused techniques 
Many defect-focused techniques attack buffer 

overruns.  Bounds checking ensures that any array 
(or, in C/C++, pointer) access to memory region is 
between the region's lower and upper bounds.  
Bounds checking detects buffer over- and under-runs.  
Languages other than C/C++ (e.g., Pascal, Java, C#, 
and Ada) often include bounds checking as a feature 
of the language.  The C/C++ language definition not 
only excludes this, but has several constructs in it that 
make efficient implementation of bounds checking 
extremely difficult.  [Ruwa] notes that the best-
known implementation (the Jones-Kelly gcc 
extensions described in [Jone]) fails on over 50% of 
programs – that is, programs that do not contain 
buffer overrun defects terminate abnormally.  
Performance overhead for bounds checking is very 
high, typically on the order of 100% or more.   

As a result, general-purpose bounds-checking is 
currently rarely used in practice for C/C++ code.   
Several current research projects focus on this 
problem.  The CCured system described in [Necu] 
combines static analysis with run-time checks, but 
requires source code and compiler modification.  
[Ruwa] explores modifications of the Jones-Kelly 
enhancements that succeed on all tested programs 
and bring overhead of checks down to 130%., and 
also investigates restricting checking only on string 
buffers in order to further improve performance. 

A substantially more limited, but also lower-
overhead, approach to bounds checking is taken by 
libraries such as LibSafe which provide additional 
checking for specific “error-prone” C standard library 
functions.  However, these implementations are 
inherently unable to protect against buffer overruns 
that do not involve any calls to such functions, and in 
many cases have other significant limitations as well.   

Several variations of defect detection focused on 
format string vulnerabilities are described in 
[Cowa01].  The approach implemented in Cowan’s 
FormatGuard is to use C preprocessor macros to 
remap printf et. al. invocations at compile time to a 
variant implementation with an additional parameter 
of the number of format specifiers required (based on 
the number of arguments provided), and then check 
the actual number of specifiers in the string provided 
at run-time.  [Cowa01] also notes situations in which 
this check is insufficient, including a real-world 
example of a vulnerable program that provided its 
own printf implementation.   

Debugging tools such as Rational’s Purify or 
Compuware’s BoundsChecker implement defect 
detection for uninitialized memory and double-frees 
of dynamic memory.  However, the typical use model 
of these tools means that the overhead of the checks 
(frequently up to an order of magnitude slowdown) is 
typically too large to be deployable on live systems. 

A general issue with these techniques is that by 
revealing previously-latent (but unexploitable) 
defects, they may have an unfortunate effect on 
application compatibility.  An extreme case of this is 
discussed in [Cowa01]: while the technique of 
rejecting any format string with a %n specifier would 
indeed prove effective at detecting many format 
string defects, it would also prevent valid programs 
from running.  

3.2 Instructions 
An obvious – and very successful – example of a 

prevention technique is marking the program’s code 
(often known as the text segment) as read-only, as 
implemented by most operating systems today.  This 
means that any direct attempt to modify the 
program’s instructions will fail.   

The “W^X” mitigation technique implemented in 
OpenBSD generalizes this to ensure that any 
executable code is marked is read-only.  This covers 
data that is used as a jump table (thus defeating the 
[Hogl] exploit discussed above), and with the 
appropriate program modifications can also protect 
self-modifying programs.  Note, however, that a 
more complex exploit that explicitly includes 
modifications of memory protection can defeat W^X 
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as well as the straightforward read-only-text 
mitigation. 

3.3 Data values 
A "stack smashing" exploit of a buffer overrun 

defect is able to modify data values of any local 
variables laid out above (that is, at a higher memory 
location than) the buffer being overrun.  Laying out 
scalar and pointer variables in any given stack frame 
below variables that are likely to be used as buffers 
(arrays or structs containing arrays) thus protects the 
non-buffer variables in that frame against being 
overrun in such stack smashing exploits.  ProPolice 
and Microsoft's Visual C++ both implement variants 
of this approach.   

Alternatively, using a separate stack for variables 
likely to be used as buffers protects scalar and pointer 
variables in other stack frames as well, and protects 
against exploits of buffer underruns.   

3.4 Addresses 
Two interesting mitigation techniques attempt to 

to interfering with all address modifications, thus 
targeting broad classes of exploits.    Simpler 
techniques instead attempt to interfere with 
modification of specific addresses frequently used in 
exploits (for example the saved return value, used in 
stack smashing exploits).  

Address space layout randomization (ASLR), 
originally implemented in the PaX Linux kernel 
patch, attempts to make the location of global and 
static variables (as well as program text), 
unpredictable.  To the extent that the randomized 
layout is undiscoverable and unpredictable, this has 
the effect of interfering with the attacker’s control 
over any pointer; even if the attacker can put an 
arbitrary value into the pointer location, she cannot 
know what it is pointing to.  This technique thus 
defeats CFG modification exploits, and also multi-
stage exploits involving pointers.   

One potential issue with this approach is the 
potential for catastrophic failure: if an attacker is able 
to determine the layout for a particular process (either 
by taking advantage of an additional defect that leads 
to an information disclosure, as described in [Bulb], 
or perhaps by making use of some support or 
debugging facilities or APIs), the randomization 
provides no effective protection.  In practice, there 
may also be implementation weaknesses in which 
certain layout that is not randomized provides a back 
door to allow the exploit to avoid randomization – for 
example, an early version of PaX did not randomize 
the location of the Global Object Table, allowing 
some straightforward attacks.  In addition, “partial 
overwrites” (where only certain bytes of a pointer are 

modified) can also defeat randomization in some 
circumstances. 

[Cowa03b] describes pointer encryption, a 
technique to protect arbitrary pointers by encrypting 
pointer values while in memory and decrypting them 
before dereferencing.  Assuming the encryption 
cannot be defeated, attackers are thus prevented from 
controlling a pointer value.  As a result, this 
technique defeats not only CFG modification 
exploits, but also all multi-stage exploits involving 
pointers.  As of early 2004, no implementation of the 
technique has been released, and so there has not 
been any detailed analysis of its limitations; as with 
randomization, it appears vulnerable to multi-defect 
exploits. 

3.4.1 Saved return addresses 
Because many popular exploit techniques involve 

modification of a saved return address, several 
mitigation techniques specifically focus on protecting 
them.  Several authors propose storing return 
addresses on a separate stack, thus preventing them 
from being modified by stack smashing exploits.   
[Dahn] propose moving stack buffers to the heap, 
which similarly prevents modification of return 
addresses (but in practice provides absolutely no 
protection, since attackers can always substitute a 
heap smashing exploit instead).  An alterative 
approach (implemented in the libverify library) 
instead focuses on detecting modification of return 
addresses by saving a copy at function start and 
checking it at function return time. 

The best-known example of detecting saved 
return address modifications is the “stack canary” 
technique, first introduced in [Cowa98] and 
implemented in combination with other mitigations 
in various products including StackGuard, ProPolice, 
and the Microsoft Visual C++ .NET compiler.  
Essentially, this approach modifies each function to 
put a distinguishable “canary” on the stack directly 
before the return value.   Before the function returns, 
the canary is checked, and if its value has been 
modified, the program aborts.  Substantial 
performance tuning and optimizations reduce the 
overhead to an acceptable level. Microsoft’s 
Windows Server 2003, various versions of Linux, 
and OpenBSD are now all built with some variant of 
stack canary checking.   

These approaches are extremely effective at 
defeating the popular “stack smashing” exploit, and 
more generally any exploit that directly uses a buffer 
overrun to modify the return address.  When other 
exploit techniques are possible for a defect, however, 
stack canaries by themselves can thus be easily 
defeated; see, for example, [Litc].   
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3.4.2 Heap data structures 
The technique of heap meta-data checking 

specifically focuses on protecting pointers used in the 
implementation of dynamic memory allocators.  
Essentially, this technique performs additional checks 
of private data structures to ensure that the intended 
invariants have not been compromised by some 
unexpected modification of memory.  This is an 
extremely effective mitigation against all published 
exploits for double-free defects, as well as the general 
“heap smashing” exploits for heap buffer overruns.  
However, an insufficient implementation may by 
bypassable (for example, [Phen] discusses a 
successful search for un-validated meta-data when 
exploiting a Cisco IOS heap overrun). 

3.4.3 Exception data structures 
The SafeSEH mechanisms introduced in 

Microsoft VC++ .NET are another example of 
detecting modification of specific pointers, in this 
case those contained in exception handling structures.  
This additional checking defeats the “exception 
handling clobbering” attack. 

3.5 CFG modification 
Much work on mitigations has gone into attempts 

to defeat code injection, or more generally CFG 
modification exploits.  This is not surprising, since 
most published exploits, and all high-profile worms 
to date, use these techniques.  However, it is 
important to note that such mitigations provide no 
protection against other forms of exploits, and thus 
despite many authors' claims these mitigations by 
themselves can not fully prevent exploitation of 
buffer overruns or other defects.   

Making certain areas of memory non-executable, 
a collection of techniques collectively referred to as 
NX, prevents code-injection (but not arc-injection or 
pure data) exploits.  A non-executable stack defeats 
the standard stack smashing exploit (and more 
generally, any code injection exploit where the code 
is injected onto the stack): the attempt to execute 
instructions the attacker has stored on the stack fails, 
leading to program termination and effective 
mitigation.  Non-executable heaps and the so-called 
W^X generalization (no page in memory can be 
simultaneously writeable and executable) extend this 
to other areas of memory.    

Some existing programs do intentionally create 
and execute instructions on the heap and stack (e.g., 
JIT compilers, some graphics drivers, and certain 
‘thunking’ layers), so there are typically some 
application compatibility issues; these typically are 
handled by disabling the mitigation for specific 
applications. 

These are extremely popular mitigation strategies, 
due to their effectiveness at preventing the “easiest” 
exploits and the belief that they combine well with 
other techniques.  Many chips provide hardware 
support for marking pages or segments non-
executable, which makes this an attractive option 
from a performance perspective; Solaris and 64-bit 
versions of Microsoft Windows Server 2003 provide 
support for NX; OpenBSD 3.3 supports W^X; 
patches and third-party products also provide this 
support for Linux and Windows XP; and Microsoft 
has announced NX support for the upcoming 
Windows XP SP2 on CPUs that provide appropriate 
levels of hardware support. 

Systrace is a mechanism for constraining an 
application’s access to the system by restricting what 
system calls the application can make.  Depending on 
the behavior of the program being protected by 
systrace, this allows detection of some common code 
injection exploits; however, it offers no protection 
against arc injection or pure data exploits.  Systrace is 
commonly viewed as a “second line” of defense that 
attempts to limit the damage performed by an exploit 
that has succeeded in elevation of privilege. 

Program shepherding [Kiri] is a much more 
ambitious approach that attempts to prevent all 
unexpected control flow transfers – that is, all CFG 
modification attacks, specifically including arc 
injection as well as code injection.  While this 
prevents a broader class of exploits, the performance 
overhead is potentially more severe, and there are 
significant complexities related to exception 
handling, function-pointer variables, and self-
modifying code.   Currently, this is still a research 
technique. 

 

4 Incomparability of 
mitigations 

Since each mitigation technique adds cost and 
complexity to the system, it is obviously desirable to 
minimize the number of techniques that are required.  
Unfortunately, as we show in this section, all pairs of 
well-analyzed existing mitigations are incomparable: 
technique A prevents some exploits for some defects 
that are not prevented by mitigation B, but mitigation 
B prevents some exploits for some defects that are 
not prevented by mitigation A.1   

                                                           
1 [The lack of analysis to date of attacks on 

program shepherding leaves open the possibility that 
it may be strictly stronger than NX.] 
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Table 4: Incomparable mitigation techniques 

Family Classification Example techniques 
Defect focused techniques Defect bounds checking, format string 

checking, garbage collection 
Non-writable code segment Exploit: instruction  
local variable protection Exploit: data values 

 
local variable reordering or separate 
stack for buffers 

return address protection Exploit: saved return addresses stack canaries, separate return value 
stack 

heap meta-data checking Exploit: heap data structures  
general pointer protection Exploit: addresses address space randomization, pointer 

encryption  
NX (non-executable regions 
of memory) 

Exploit: code injection  

program shepherding Exploit: CFG modification  
 
This result is a consequence of the classification 

of mitigation techniques discussed in Section 4.  We 
first provide a high-level sketch of our approach and 
then a more detailed (although still informal) 
description. 

There are three interesting sub-cases that cover 
most pairs of mitigation techniques: 

 
•  Defect-focused mitigations are 

incomparable with exploit-focused 
mitigations.   

•  Exploit-focused mitigations that defeat one 
exploit primitive are incomparable with 
exploit-focused mitigations that defeat other 
exploit primitives.   

•  Mitigations that defeat code- and arc-
injection are incomparable with mitigations 
that defeat data and instruction modification. 

 
Case-by-case analysis is then required for the 

remaining pairs, primarily the multiple families of 
mitigations that defeat various address modification 
exploits. 

4.1 Defect-focused vs. exploit-
focused mitigations 

Defect-focused and exploit-focused mitigation 
techniques are fundamentally incomparable.   A 
simple example makes the point intuitively, using 
bounds checking as an example of a defect-focused 
mitigation technique and NX as an example of an 
exploit-focused technique.  NX not only prevents 
code injection exploits for buffer overrun defects (as 
does bounds checking), but also for other kinds of 
defects such as format string attacks that are not 
addressed by bounds checking.  Conversely, bounds 
checking prevents other categories of exploits for 
buffer overruns that are not addressed by NX.  More 

generally, bounds checking prevents pure data 
exploits of buffer overruns – exploits that are not 
prevented by any existing exploit-focused mitigation 
technique. 

A similar argument can be made for any 
combination of a defect-focused and an exploit-
focused mitigation assuming that there are multiple 
possible exploit techniques for at least some defects 
prevented by the defect-focused mitigation, and the 
exploit-focused mitigation applies to at least some 
defects of multiple types.  These assumptions hold 
with respect to the exploit and mitigation techniques 
discussed in this paper.   

As this example shows, the possibility of 
currently-unknown exploit techniques tends to be an 
argument for defect-focused mitigations.  On the 
other hand, there is also a possibility of currently-
unknown defects that are exploitable by existing 
exploit techniques; this is an argument in favor the 
complementary value of exploit-focused mitigations. 

4.2 Exploit-focused mitigations 
The incomparability of mitigations that defeat 

different exploit primitives is trivial: the sets of 
single-operation exploits (that is, exploits in which 
the attacker only uses a single primitive operation) 
they prevent are by definition disjoint.  The 
incomparability of mitigations focused on code- and 
arc-injection with mitigations focused on data value 
or instruction modifications is also immediately 
obvious.   

We now must proceed to case-by-case analysis of 
the remaining pairs of mitigations. 

Heap meta-data checking is intuitively 
incomparable with return address protection because 
they protect disjoint memory locations.  Specifically, 
heap meta-data checking protects against exploits of 
heap buffer overruns and double frees, but not against 
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stack buffer overruns; return address protection is the 
exact opposite. 

All published general pointer protection 
mitigations are vulnerable to exploits involving an 
earlier information disclosure.  Conversely, however, 
they protect against exploits of all kinds of addresses 
(unlike other address protection mitigations) and 
against multi-stage pure data exploits (unlike 
mitigations that prevent code- and arc-injection).  

Program shepherding defeats arc-injection 
exploits, unlike NX.  Little work has been done 
analyzing weaknesses of program shepherding, and 
so it is not clear whether the converse also holds. The 
prototype implementation of program shepherding 
has several known vulnerabilities (limitations on 
handling of indirect calls, an internal data structure 
that is not protected) that are likely to allow exploits 
that would be prevented by NX, but [Kiri] has 
sketched extensions that may address this.  It is 
possible that with sufficiently precise analysis of 
indirect jumps (including handling of C++ virtual 
functions and exceptions, C longjmps, and re-
analysis after a program’s control-flow graph is 
modified at runtime via loading and unloading of 
dynamic link libraries) program shepherding may 
prove to be strictly stronger than NX.  These 
solutions have not yet been implemented in practice, 
so currently program shepherding is indeed 
incomparable with NX, but this may change in the 
future. 

4.3 Implementation-based 
considerations 

The discussion above concentrated on the 
inherent limitations of the various mitigation 
techniques.  In practice, the actual implementation of 
techniques is also a potentially-important source of 
incomparability. 

One important instance of this relates to the 
difference between mitigations that require 
recompilation and those that do not.  Currently, 
implementations of stack canary and bounds 
checking schemes require recompilation, and so do 
not provide any protection to software that is not 
recompiled.  Some implementations of techniques 
such as NX and heap meta-data checking, by 
contrast, apply at the system wide level, and so have 
the potential to protect most un-recompiled 
applications as well – although as noted above, some 
applications involving on-the-fly code generation 
require modification for NX compatibility. 

Any implementation may well have limitations.  
For example, many stack canary implementations 
have optimizations that disable checking on “small” 
objects; it is certainly possible to construct situations 

in which exploitable buffer overruns occur in those 
small objects and the exploit is not detected due to 
optimizations.  Application compatibility concerns 
may also lead to weaknesses; NX schemes, for 
example, typically have to provide some backward 
compatibility switch for applications that generate 
instructions on the fly, and so those applications may 
receive less (or no) protection. 

Finally, implementations may have weaknesses or 
flat-out bugs.  Early versions of some stack canary 
checks were vulnerable to exploits where the attacker 
could guess the canary. [Litc] discusses 
implementation weaknesses, since fixed, in 
Microsoft’s SafeSEH implementation; and [Bulb] 
presents attacks that took advantage of incomplete 
randomizations in early versions of PaX. 

5 Combinations of mitigations 
The most powerful currently-deployed 

approaches to mitigation combine multiple 
complementary techniques.  This is a natural 
response to the incomparability of mitigations, and 
some combinations are obviously attractive – for 
example, stack canaries apply only to stack buffer 
overruns of stack memory, and heap meta-data 
checking applies only to heap buffer overruns, so the 
two are clearly complementary.   

More generally, the possibility of implementation 
weaknesses is another argument in favor of 
combining mitigations.  Of course, the additional 
costs (including system complexity) of using multiple 
mitigation techniques need to be balanced against the 
benefits. 

Assuming that the techniques being combined are 
independent (in the sense that they have no 
interactions), a combination of multiple techniques 
mitigates an individual vulnerability if any one 
technique mitigates it.   

Unfortunately, currently-deployed combinations 
of mitigation techniques – and more generally, any 
combination of currently published mitigations – do 
not provide even the weaker level of protection of 
preventing all published exploits.  It is important to 
note that this is not simply a matter of 
implementation weaknesses.  Pure data exploits of 
integer overflows and signed/unsigned mismatches 
are simply not addressed by any published mitigation 
technique.  Pure data exploits of buffer overruns are 
only addressed by the defect-oriented technique of 
bounds checking, which is not yet widely deployed. 
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Table 5: Combinations of mitigations and some known unmitigated exploits (ignoring implementation 

weaknesses) 
Techniques Some known unmitigated exploit techniques 
NX + return value protection + 
heap meta-data checking 

Pure data; some arc injection 

return value protection + heap 
meta-data checking 

Pure data (direct and multi-stage); some multi-stage arc/code injection 

return value protection + heap 
meta-data checking + variable 
reordering + NX 

Most pure data; some arc injection 

NX + pointer protection Most pure data; arc injection via partial overwrites; using previous 
information disclosures vulnerabilities 

bounds checking + heap meta-data 
checking + format string checking 

Some pure data (e.g., for integer overflows, signed/unsigned mismatches, 
etc.) 

NX + pointer protection + format 
string checking + variable 
reordering 

Some pure data (e.g., for some buffer overruns, integer overflows, 
signed/unsigned mismatches, etc.); using previous information disclosures 
vulnerabilities 

 

6 Future work 
Exploits for race conditions are often viewed as 

being a “next wave” of vulnerabilities; conceptually, 
these (and the mitigations) should fit cleanly into this 
analysis framework.  Moving beyond low-level 
defects to such higher-level (and non-C/C++) 
constructs as script injection and SQL injection, may 
require consideration of new exploit techniques; 
however, it is interesting to note that this is 
essentially a form of instruction modification, just at 
a higher level of “instruction”. 

Better understanding the impact of actual 
implementations of mitigation techniques is likely to 
require more precise analysis of the specific 
characteristics of exploits and mitigations.  One 
potential approach is to extend the Dor et. al. memory 
model (originally targeted at static analysis of buffer 
overrun defects) to the full complexity needed to 
consider exploits and mitigations as well. 

More fundamentally, an important question not 
addressed in this paper is what percentage of 
vulnerabilities is exploitable for elevation of privilege 
in the presence or absence of specific mitigations.   
With respect to known exploit techniques, this 
requires estimating what percentage of defects is 
amenable to various exploit techniques, and the 
effectiveness of various mitigation techniques at 
defeating the exploits.  This quantification will allow 
better understanding of the actual strength of a 
system in the presence of combinations of mitigations 
– in light of the a well-known truism that “there is no 
such thing as perfect security”, do some of the 
combinations of mitigations discussed above give 
sufficient protection in practice that exploitation of 

low-level defects will cease to be a significant 
elevation of privilege threat?  Combining this 
information with cost estimates will also enable more 
meaningful cost/benefit tradeoffs between mitigation 
techniques. 

The specific mitigations discussed in this paper 
can be viewed as special cases of more general 
“defenses” that include firewalls, intrusion detection 
systems, program sandboxing, etc.  Mitigations 
interfere with exploits by preventing some of the 
“environmental conditions” needed for a successful 
exploit; so do the general defenses.  Combining this 
work with cost/benefit analyses such as in [Butl] is a 
longer-term goal. 

7 Related work 
Exploits first received significant attention in 

response to the "Internet worm" (also know as the 
fingerd worm); [Spaf] is the definitive writeup.  
Subsequent work has rarely been published in 
traditional journals but is often of very high quality; 
[Litc] is a good example.  Cowan’s work, especially 
[Cowa00, Cowa01], and [Wila] reference many of 
the key papers from Phrack and elsewhere. [Hogl] is 
a recent book-length publication focused on exploits 
and contains significant references.  None of these 
works reduce exploit techniques to their primitives. 

To date, there have been few significant efforts at 
collecting, let alone classifiying, mitigations.  
[Cowa00] discusses a handful of techniques. [Wila] 
provides a simple partial taxonomy of several 
mitigations focused on CFG-modification; more 
importantly, this work compares the effectiveness of 
several mitigation techniques against a testbed of 
roughly 20 “attack patterns” (exploit techniques, in 
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our terminology), and finds that none are particularly 
effective – all miss at least 50% of the attacks.  As 
with exploits, there is substantial work on individual 
mitigation techniques.  Crispin Cowan's StackGuard 
[Cowa98] and SolarDesigner's non-executable stack 
Linux kernel patch (described in [Wojt]) were 
amongst the first high-profile mitigation approaches. 

Research continues on more ambitious mitigation 
techniques. Reducing overhead to an acceptable level 
is a major focus defect-focused mitigations 
concentrating on buffer overruns; [Ruwa] and [Necu] 
are tood examples of this.  Program shepherding 
[Kiri] and pointer encryption [Cowa03b], by contrast, 
explore more powerful exploit-focused mitigations. 

Static analysis of defects is a related field; 
obviously, removing defects is even better than 
mitigating the resulting vulnerability; [Cowa03a] 
includes discussion of static analysis tools. [Xie], 
[Dor] and others are good examples of more recent 
work.  Unfortunately, none of these tools find all the 
defects in real cases; for example, while many of the 
tools have found both previously-reported and (in 
some cases) new buffer overrun defects in Sendmail, 
additional defects have since been found via manual 
inspection.  Recent work such as CCured [Necu] 
combines static and dynamic techniques, but requires 
modification to the source code, and has not yet been 
broadly deployed. 
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