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Abstract—As AJAX applications gain popularity, client-side
JavaScript code is becoming increasingly complex. However,
few automated vulnerability analysis tools for JavaScript exist.
In this paper, we describe the first system for exploring the
execution space of JavaScript code using symbolic execution.
To handle JavaScript code’s complex use of string operations,
we design a new language of string constraints and implement
a solver for it. We build an automatic end-to-end tool, Kudzu,
and apply it to the problem of finding client-side code injection
vulnerabilities. In experiments on 18 live web applications,
Kudzu automatically discovers 2 previously unknown vulner-
abilities and 9 more that were previously found only with a
manually-constructed test suite.
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I. INTRODUCTION

Rich web applications have a significant fraction of their

code written in client-side scripting languages, such as

JavaScript. As an increasing fraction of code is found on

the client, client-side security vulnerabilities (such as client-

side code injection [20], [26]–[28]) are becoming a promi-

nent threat. However, a majority of the research on web

vulnerabilities so far has focused on server-side application

code written in PHP and Java. There is a growing need for

powerful analysis tools for the client-side components of

web applications. This paper presents the first techniques

and system for automatically exploring the execution space

of client-side JavaScript code. To explore this execution

space, our techniques generate new inputs to cover a pro-

gram’s value space using dynamic symbolic execution of

JavaScript, and to cover its event space by automatic GUI

exploration.

Dynamic symbolic execution for JavaScript has numerous

applications in web security. In this paper we focus on one

of these applications: automatically finding client-side code

injection vulnerabilities. A client-side code injection attack

occurs when client-side code passes untrusted input to a

dynamic code evaluation construct, without proper validation

or sanitization, allowing an attacker to inject JavaScript code

that runs with the privileges of a web application.

JavaScript execution space exploration is challenging for

many reasons. In particular, JavaScript applications accept

many kinds of input, and those inputs are structured just

as strings. For instance, a typical application might take

user input from form fields, messages from its server via

XMLHttpRequest, and data from code running concur-

rently in other browser windows. Each kind of input string

has its own format, so developers use a combination of cus-

tom routines and third-party libraries to parse and validate

the inputs they receive. To effectively explore a program’s

execution space, a tool must be able to supply values for all

of these different kinds of inputs and reason about how they

are parsed and validated.

Approach. In this paper, we develop the first com-

plete symbolic-execution based framework for client-side

JavaScript code analysis. We build an automated, stand-

alone tool that, given a URL for a web application, automat-

ically generates high-coverage test cases to systematically

explore its execution space. Automatically reasoning about

the operations we see in real JavaScript applications requires

a powerful constraint solver, especially for the theory of

strings. However, the power needed to express the semantics

of JavaScript operations is beyond what existing string

constraint solvers [14], [18] offer. As a central contribution

of this work, we overcome this difficulty by proposing a

constraint language and building a practical solver (called

Kaluza) that supports the specification of boolean, machine

integer (bit-vector), and string constraints, including regular

expressions, over multiple variable-length string inputs. This

language’s rich support for string operations is crucial for

reasoning about the parsing and validation checks that

JavaScript applications perform.

To show the practicality of our constraint language, we

detail a translation from the most commonly used JavaScript

string operations to our constraints. This translation also

harnesses concrete information from a dynamic execution

of the program in a way that allows the analysis to scale.

We analyze the theoretical expressiveness of the theory of

strings supported by our language (including in comparison

to existing constraint solvers), and bound its computational

complexity. We then give a sound and complete decision

procedure for the bounded-length version of the constraint

language. We develop an end-to-end system, called Kudzu,

that performs symbolic execution with this constraint solver

at its core.

End-to-end system. We identify further challenges in build-

ing an end-to-end automated tool for rich web applications.

For instance, because JavaScript code interacts closely with a



user interface, its input space can be divided into two classes,

the events space and the value space. The former includes

the state (check boxes, list selections) and sequence of

actions of user-interface elements, while the latter includes

the contents of external inputs. These kinds of input jointly

determine the code’s behavior, but they are suited to differ-

ent exploration techniques. Kudzu uses GUI exploration to

explore the event space, and symbolic execution to explore

the value space.

We evaluate Kudzu’s end-to-end effectiveness by applying

it to a collection of 18 JavaScript applications. The results

show that Kudzu is effective at getting good coverage

by discovering new execution paths, and it automatically

discovers 2 previously-unknown vulnerabilities, as well as 9

client-side code injection vulnerabilities that were previously

found only with a manually-created test suite.

Contributions. In summary, this paper makes the following

main contributions:

• We identify the limitations of previous string constraint

languages that make them insufficient for parsing-heavy

JavaScript code, and design a new constraint language

to resolve those limitations. (Section IV)

• We design and implement Kaluza, a practical decision

procedure for this constraint language. (Section V)

• We build the first symbolic execution engine for

JavaScript, using our constraint solver. (Sections III and

VI)

• Combining symbolic execution of JavaScript with au-

tomatic GUI exploration and other needed components,

we build the first end-to-end automated system for

exploration of client-side JavaScript. (Section III)

• We demonstrate the practical use of our implementation

by applying it to automatically discovering 11 client-

side code injection vulnerabilities, including two that

were previously unknown. (Section VII)

II. PROBLEM STATEMENT AND OVERVIEW

In this section we state the problem we focus on, exploring

the execution space of JavaScript applications; describe

one of its applications, finding client-side code injection

vulnerabilities; and give an overview of our approach.

Problem statement. We develop techniques to systemati-

cally explore the execution space of JavaScript application

code.

JavaScript applications often take many kinds of input.

We view the input space of a JavaScript program as split

into two categories: the event space and the value space.

• Event space. Rich web applications typically define tens

to hundreds of JavaScript event handlers, which may

execute in any order as a result of user actions such

as clicking buttons or submitting forms. Event handler

code may check the state of GUI elements (such as

check-boxes or selection lists). The ordering of events

and the state of the GUI elements together affects the

behavior of the application code.

• Value space. The values of inputs supplied to a program

also determine its behavior. JavaScript has numerous

interfaces through which input is received:

– User data. Form fields, text areas, and so on.

– URL and cross-window communication abstrac-

tions. Web principals hosted in other windows

or frames can communicate with JavaScript code

via inter-frame communication abstractions such as

URL fragment identifiers and HTML 5’s proposed

postMessage, or via URL parameters.

– HTTP channels. Client-side JavaScript code can

exchange data with its originating web server using

XMLHttpRequest, HTTP cookies, or additional

HTTP GET or POST requests.

This paper primarily focuses on techniques to systemat-

ically explore the value space using symbolic execution of

JavaScript, with the goal of generating inputs that exercise

new program paths. However, automatically exploring the

event space is also required to achieve good coverage. To

demonstrate the efficacy of our techniques in an end-to-end

system, we combine symbolic execution of JavaScript for the

value space with a GUI exploration technique for the event

space. This full system is able to automatically explore the

combined input space of client-side web application code.

Application: finding client-side code injection vulnerabil-

ities. Exploring a program’s execution space has a number of

applications in the security of client-side web applications.

In this paper, we focus specifically on one security applica-

tion, finding client-side code injection vulnerabilities.

Client-side code injection attacks, which are sometimes

referred to as DOM-based XSS, occur when client-side

code uses untrusted input data in dynamic code evaluation

constructs without sufficient validation. Like reflected or

stored XSS attacks, client-side code injection vulnerabilities

can be used to inject script code chosen by an attacker,

giving the attacker the full privileges of the web application.

We call the program input that supplies the data for an attack

the untrusted source, and the potentially vulnerable code

evaluation construct the critical sink. Examples of critical

sinks include eval, and HTML creation interfaces like

document.write and .innerHTML.

In our threat model, we treat all URLs and cross-window

communication abstractions as untrusted sources, as such in-

puts may be controlled by an untrusted web principal. In ad-

dition, we also treat user data as an untrusted source because

we aim to find cases where user data may be interpreted as

code. The severity of attacks from user-data on client-side is

often less severe than a remote XSS attack, but developers

tend to fix these and Kudzu takes a conservative approach of

reporting them. HTTP channels such as XMLHttpRequest

are currently restricted to communicating with a web server



from the same domain as the client application, so we

do not treat them as untrusted sources. Developers may

wish to treat HTTP channels as untrusted in the future

when determining susceptibility to cross-channel scripting

attacks [5], or when enhanced abstractions (such as the

proposed cross-origin XMLHttpRequest [30]) allow cross-

domain HTTP communication directly from JavaScript.

To effectively find XSS vulnerabilities, we require two

capabilities: (a) generating directed test cases that explore

the execution space of the program, and (b) checking, on

a given execution path, whether the program validates all

untrusted data sufficiently before using it in a critical sink.

Custom validation checks and parsing routines are the norm

rather than the exception in JavaScript applications, so our

tool must check the behavior of validation rather than simply

confirming that it is performed.

In previous work, we developed a tool called FLAX which

employs taint-guided fuzzing for finding client-side code

injection attacks [27]. However, FLAX relies on an external,

manually developed test harness to explore the path space.

Kudzu, in contrast, automatically generates a test suite that

explores the execution space systematically. Kudzu also uses

symbolic reasoning (with its constraint solver) to check if the

validation logic employed by the application is sufficient to

block malicious inputs — this is a one-step mechanism for

directed exploit generation as opposed to multiple rounds

of undirected fuzzing employed in FLAX. Static analysis

techniques have also been employed for JavaScript [12]

to reason about multiple paths, but can suffer from false

positives and do not produce test inputs or attack instances.

Symbolic analyses and model-checking have been used for

server-side code [2], [21]; however, the complexity of path

conditions we observe requires more expressive symbolic

reasoning than supported by tools for server-side code.

Approach Overview. The value space and event space of

a web application are two different components of its input

space: code reachable by exploring one part of the input

space may not be reachable by exploring the other com-

ponent alone. For instance, exploring the GUI event space

results in discovering new views of the web application, but

this does not directly affect the coverage that can be achieved

by systematically exploring all the paths in the code imple-

menting each view. Conversely, maximizing path coverage is

unlikely to discover functionality of the application that only

happens when the user explores a different application view.

Therefore, Kudzu employs different techniques to explore

each part of the input space independently.

Value space exploration. To systematically explore differ-

ent execution paths, we develop a component that performs

dynamic symbolic execution of JavaScript code, and a new

constraint solver that offers the desired expressiveness for

automatic symbolic reasoning.

In dynamic symbolic execution, certain inputs are treated

as symbolic variables. Dynamic symbolic execution differs

from normal execution in that while many variable have their

usual (concrete) values, like 5 for an integer variable, the

values of other variables which depend on symbolic inputs

are represented by symbolic formulas over the symbolic

inputs, like input
1

+ 5. Whenever any of the operands of a

JavaScript operation is symbolic, the operation is simulated

by creating a formula for the result of the operation in terms

of the formulas for the operands. When a symbolic value

propagates to the condition of a branch, Kudzu can use its

constraint solver to search for an input to the program that

would cause the branch to make the opposite choice.

Event space exploration. As a component of Kudzu we

develop a GUI explorer that searches the space of all event

sequences using a random exploration strategy. Kudzu’s GUI

explorer component randomly selects an ordering among the

user events registered by the web page, and automatically

fires these events using an instrumented version of the web

browser. Kudzu also has an input-feedback component that

can replay the sequence of GUI events explored in any

given run, along with feeding new values generated by the

constraint solver to the application’s data inputs.

Testing for client-side code injection vulnerabilities. For

each input explored, Kudzu determines whether there is a

flow of data from an untrusted data source to a critical

sink. If it finds one, it seeks to determine whether the

program sanitizes and/or validates the input correctly to

prevent attackers from injecting dangerous elements into

the critical sink. Specifically, it attempts to prove that the

validation is insufficient by constructing an attack input. As

we will describe in more detail in Section III-B, it combines

the results of symbolic execution with a specification for

attacks to create a constraint solver query. If the constraint

solver finds a solution to the query, it represents an attack

that can reach the critical sink and exploit a client-side code

injection vulnerability.

III. END-TO-END SYSTEM DESIGN

This section describes the various components that work

together to make a complete Kudzu-based vulnerability-

discovery system work. The full explanation of the constraint

solver is in Sections IV through VI. For reference, the

relationships between the components are summarized in

Figure 1.

A. System Components

First, we discuss the core components that would be used

in any application of Kudzu: the GUI explorer that generates

input events to explore the event space, the dynamic symbolic

interpreter that performs symbolic execution of JavaScript,

the path constraint extractor that builds queries based on

the results of symbolic execution, the constraint solver that

finds satisfying assignments to those queries, and the input



Figure 1: Architecture diagram for Kudzu. The components drawn in the dashed box perform functions specific to our

application of finding client-side code injection. The remaining components are application-agnostic. Components shaded in

light gray are the core contribution of this paper.

feedback component that uses the results from the constraint

solver as new program inputs.

The GUI explorer. The first step in automating JavaScript

application analysis is exploring the event space of user

interactions. Each event corresponds to a user interaction

such as clicking a check-box or a button, setting focus

on a field, adding data to data fields, clicking a link,

and so on. Kudzu currently explores the space of all se-

quences of events using a random exploration strategy. One

of the challenges is to comprehensively detect all events

that could result in JavaScript code execution. To address

this, Kudzu instruments the browser functions that process

HTML elements on the current web page to record when an

event handler is created or destroyed. Kudzu’s GUI explorer

component randomly selects an ordering among the user

events registered by the web page and executes them1. The

random seed can be controlled to replay the same ordering

of events. While invoking handlers, the GUI component also

generates (benign) random test strings to fill text fields.

(Later, symbolic execution will generate new input values

for these fields to explore the input space further.) Links

that navigate the page away from the application’s domain

are cancelled, thereby constraining the testing to a single

application domain at a time. In the future, we plan to

investigate alternative strategies to prioritize the execution

of events discovered as well.

Dynamic symbolic interpreter. Kudzu performs dynamic

symbolic execution by first recording an execution of the

program with concrete inputs, and then symbolically in-

terpreting the recorded execution in a dynamic symbolic

1Invoking an event handler may invalidate another handler (for instance,
when the page navigates as a result). In that case, the invalidated handlers
are ignored and if new handlers are created by the event that causes
invalidation, these events are explored subsequently.

interpreter. For recording an execution trace, Kudzu employs

an existing instrumentation component [27] implemented in

the web browser’s JavaScript interpreter. For each JavaScript

bytecode instruction executed, it records the semantics of

the operation, its operands and operand values in a sim-

plified intermediate language called JASIL [27]. The set

of JavaScript operations captured includes all operations

on integers, booleans, strings, arrays, as well as control-

flow decisions, object types, and calls to browser-native

methods. For the second step, dynamic symbolic execution,

we have developed from scratch a symbolic interpreter for

the recorded JASIL instructions.

Symbolic inputs for Kudzu are configurable to match the

needs of an application. For instance, in the application we

consider, detecting client-side code injection, all URL data,

data received over cross-window communication abstrac-

tions, and user data fields are marked symbolic. Symbolic

inputs may be strings, integers, or booleans. Symbolic execu-

tion proceeds on the JASIL instructions in the order they are

recorded in the execution trace. At any point during dynamic

symbolic execution, a given operand is either symbolic or

concrete. If the operand is symbolic, it is associated with a

symbolic value; otherwise, its value is purely concrete and is

stored in the dynamic execution trace. When interpreting a

JASIL operation in the dynamic symbolic interpreter, the

operation is symbolically executed if one or more of its

input operands is symbolic. Otherwise the operation of the

symbolic interpreter on concrete values would be exactly the

same as the real JavaScript interpreter, so we simply reuse

the concrete results already stored in the execution trace.

The symbolic value of an operand is a formula that

represents its computation from the symbolic inputs. For

instance, for the JASIL assignment operation y := x, if x

is symbolic (say, with the value input
1

+ 5), then symbolic

execution of the operation copies this value to y, giving



y the same symbolic value. For an arithmetic operation,

say y := x1 + x2 where x1 is symbolic (say with value

input
2

+ 3) and x2 is not (say with the concrete value 7),
the symbolic value for y is the formula representing the

sum (input
2
+10). Operations over strings and booleans are

treated in the same way, generating formulas that involve

string operations like match and boolean operations like

and. At this point, string operations are treated simply

as uninterpreted functions. During the symbolic execution,

whenever the symbolic interpreter encounters an operation

outside the supported formula grammar, it forces the desti-

nation operand to be concrete. For instance, if the operation

is x = parseFloat(s) for a symbolic string s, x and

s can be replaced with their concrete values from the trace

(say, 4.3 and “4.3”). This allows symbolic computation to

continue for other values in the execution.

Path constraint extractor. The execution trace records

each control-flow branch (e.g., if statement) encountered

during execution, along with the concrete value (true or

false) representing whether the branch was taken. During

symbolic execution, the corresponding branch condition is

recorded by the path constraint extractor if it is symbolic.

As execution continues, the formula formed by conjoining

the symbolic branch conditions (negating the conditions of

branches that were not taken) is called the path constraint. If

an input value satisfies the path constraint, then the program

execution on that input will follow the same execution path.

To explore a different execution path, Kudzu selects a

branch on the execution path and builds a modified path

constraint that is the same up to that branch, but that has

the negation of that branch condition (later conditions from

the original branch are omitted). An input that satisfies

this condition will execute along the same path up to the

selected branch, and then explore the opposite alternative.

There are several strategies for picking the order in which

branch conditions can be negated — Kudzu currently uses

a generational search strategy [11].

Constraint solver.Most symbolic execution tools in the past

have relied on an existing constraint solver. However, Kudzu

generates a rich set of constraints over string, integer and

boolean variables for which existing off-the-shelf solvers are

not powerful enough. Therefore, we have built a new solver,

Kaluza, for our constraints (we present the algorithm and

design details in Section V). In designing this component,

we examined the symbolic constraints Kudzu generates

in practice. From the string constraints arising in these,

we distilled a set of primitive operations required in a

core constraint language. (This core language is detailed

in Section IV, while the solver’s full interface is given in

Section VI.) We justify our intuition that solving the core

constraints is sufficient to model JavaScript string operations

in Section VI, where we show a practical translation of

JavaScript string operations into our constraint language.

Input feedback. Solving the path constraint formula using

the solver creates a new input that explores a new program

path. These newly generated inputs must be fed back to

the JavaScript program: for instance simulated user inputs

must go in their text fields, and GUI events should be

replayed in the same sequence as on the original run. The

input feedback component is responsible for this task. As a

particular HTML element (e.g a text field) in a document

is likely allocated a different memory address on every

execution, the input feedback component uses XPath [32]

and DOM identifiers to uniquely identify HTML elements

across executions and feed appropriate values into them. If

an input comes from an attribute for a DOM object, the input

feedback component sets that attribute when the object is

created. If the input comes via a property of an event that

is generated by the browser when handling cross-window

communication, such as the origin and data properties

of a postMessage event, the component updates that

property when the JavaScript engine accesses it. Kudzu

instruments the web browser to determine the context of

accesses, to distinguish between accesses coming from the

JavaScript engine and accesses coming from the browser

core or instrumentation code.

B. Application-specific components

Next, we discuss three components that are specialized for

the task of finding client-side code injection vulnerabilities: a

sink-source identification component that determines which

critical sinks might receive untrusted input, a vulnerability

condition extractor that captures domain knowledge about

client-side code injection attacks, and the attack verification

component that checks whether inputs generated by the tool

in fact represent exploits.

Sink-source identification. To identify if external inputs

are used in critical sink operations such as eval or

document.write, we perform a dynamic data flow anal-

ysis on the execution trace. As outlined earlier, we treat all

URL data, data received over cross-window communication

abstractions (such as postMessage), and data filled into

user data fields as potentially untrusted. The data flow

analysis is similar to a dynamic taint analysis. Any execution

trace that reveals a flow of data to a critical sink is subject

to further symbolic analysis for exploit generation. We

use an existing framework, FLAX, for this instrumentation

and taint-tracking [27] in a manner that is faithful to the

implementation of JavaScript in the WebKit interpreter.

Vulnerability condition extractor. An input represents an

attack against a program if it passes the program’s validation

checks, but nonetheless implements the attacker’s goals (i.e.,

causes a client-side code injection attack) when it reaches a

critical sink. The vulnerability condition extractor collects

from the symbolic interpreter a formula representing the

(possibly transformed) value used at a critical sink, and



combines it with the path constraint to create a formula

describing the program’s validation of the input.2. To de-

termine whether this value constitutes an attack, the vulner-

ability condition extractor applies a sink-specific vulnera-

bility condition specification, which is a (regular) grammar

encoding a set of strings that would constitute an attack

against a particular sink. This specification is conjoined with

the formula representing the transformed input to create a

formula representing values that are still dangerous after the

transformation.

For instance, in the case of the eval sink, the vulnera-

bility specification asserts that a valid attack should be zero

or more statements each terminated by a ‘;’, followed by

the payload. Such grammars can be constructed by using

publicly available attack patterns [13]. The tool’s attack

grammars are currently simple and can be extended easily

for comprehensiveness and to incorporate new attacks.

To search only for realistic attacks, the specification also

incorporates domain knowledge about the possible values

of certain inputs. For instance, when a string variable cor-

responds to the web URL for the application, we assert that

the string starts with the same domain as the application.

Attack verification. Kudzu automatically tests the exploit

instance by feeding the input back to the application, and

checking if the attack payload (such as a script with an alert

message) is executed. If this verification fails, Kudzu does

not report an alarm.

IV. CORE CONSTRAINT LANGUAGE

In order to support a rich language of input constraints

with a simple solving back end, we have designed an

intermediate form we call the core constraint language.

This language is rich enough to express constraints from

JavaScript programs, but simple enough to make solving the

constraints efficient. In this section we define the constraint

language, analyze its expressiveness and the theoretical

complexity of deciding it, and compare its expressiveness

to the core languages of previous solvers.

A. Language Definition

The abstract syntax for our core constraint language is

shown in Figure 2. A formula in the language is an ar-

bitrary boolean combination of constraints. Variables which

represent strings may appear in five types of constraints. The

first three constraint types indicate that a string is a member

of the language defined by a regular expression, that two

strings are equal, or one string is equal to the concatenation

of two other strings. The two remaining constraints relate

the length of one string to a constant natural number, or to

the length of another string, by any of the usual equality or

2Sanitization for critical client-side sink operations may happen on the
server side (when data is sent back via XMLHttpRequest). Our imple-
mentation handles this by recognizing such transformations using approxi-
mate tainting techniques [27] for data transmitted over XMLHttpRequest

Formula ::= ¬Formula
| Formula ∧ Formula

| Constraint

Constraint ::= Var ∈ RegExp

| Var = Var

| Var = Var ◦ Var
| length(Var) Rel Number

| length(Var) Rel length(Var)
RegExp ::= Character

| ǫ

| RegExp RegExp

| RegExp|RegExp

| RexExp*

Rel ::= < | ≤ | = | ≥ | >

Figure 2: Abstract grammar of the core constraint language.

ordering operations. Regular expressions are formed from

characters or the empty string (denoted by ǫ) via the usual

operations of concatenation (represented by juxtaposition),

alternation (|), and repetition zero or more times (Kleene

star *).

The constraints all have their usual meanings. Any number

of variables may be introduced, and Characters are drawn

from an arbitrary non-empty alphabet, but Numbers must be

non-negative integers. For present purposes, strings may be

of unbounded length, though we will introduce upper bounds

on their lengths later.

B. Expressiveness and Complexity

Though the core constraint language is intentionally small,

it is not minimal: some types of constraints are included for

the convenience of translating to and from the core language,

but do not fundamentally increase its expressiveness. String

equality, comparisons between lengths and constants, and

inequality comparisons between lengths can be expressed

using concatenation, regular expressions, and equality be-

tween string lengths respectively; the details are omitted for

space.

Each of the remaining constraint types (regular expres-

sion membership, concatenation, and length) makes its own

contribution to the expressiveness of the core constraints.

Appendix A gives examples of the sets of strings that each

constraint type can uniquely define. The core constraint lan-

guage is expressive enough that the complexity of deciding

it is not known precisely; it is at least PSPACE-hard. These

relationships are summarized in Figure 3. The complexity

of our core constraint language falls to NP-complete when

the lengths of string variables are bounded, as they are in

our implementation. Further details are in the appendix.

C. Expressiveness Comparison

Our system’s core constraint language is more expressive

than the constraints used in similar previous systems, and



Figure 3: Relations between the unbounded versions of

several theories of strings. Theories higher in the graph are

strictly more expressive but are also at least as complex

to decide. Kudzu’s core constraint language (shaded) is

strictly more expressive than either the core language of

HAMPI [18] or the theory of word equations and an equal

length predicate (the “pure library language” of [4]).

this expressiveness is key in allowing it to handle a more

complex class of applications.

Bjørner et al. [4] present a “pure library language” that,

like our core constraint language, includes word equations

and the ability to assert that two strings have the same length,

so like our language its decidability is open. However,

their language does not include regular expressions. Regular

expressions may be less common in the .NET applications

Bjørner et al. study, but they are used ubiquitously in

JavaScript, so regular expression support is mandatory in our

domain. Similarly the work of Caballero et al. [3], [7] deals

with programs compiled from C-family languages, whose

string operations are much more limited.

The DPRLE tool [14] focuses on a class of constraints that

combine concatenation and regular expression matching, but

in a more limited way than our tool supports. DPRLE ad-

dresses a different problem domain, since it gives solutions

for constraints over languages (potentially infinite sets of

strings) rather than single strings, but this makes the task

significantly more difficult. We were unable to express the

constraints from our application in DPRLE’s input format or

any straightforward extension of it. For instance, there is no

way to express the constraint that two language expressions

should be equal, not surprising since such constraints in

general are undecidable [8].

HAMPI [18] provides support for regular expression

constraints (and in fact we build on its implementation for

this feature), but its support for other constraints is limited,

particularly by the fact that it supports only a single string

variable. The variable can be concatenated with constant

strings, but these string expressions cannot be compared with

each other, only with regular expressions, so HAMPI lacks

the full generality of word equations. For instance, HAMPI

constraints cannot define the set {uv#u#v : u, v ∈ {0, 1}∗}.
It is worth reemphasizing that these limitations are not just

theoretical: they make these previous systems unsuitable for

our applications. One of the most common operations in

the programs we examine is to parse a single input string

(such as a URL) into separate input variables using split

or repeated regular expression matching. Representing the

semantics of such an operation requires relating the contents

of one string variable to those of another, something that

neither DPRLE nor HAMPI supports.

V. CORE CONSTRAINT SOLVING APPROACH

We have implemented a decision procedure called Kaluza

for the core set of constraints, which is available online [16].

In this section, we explain our algorithm for solving the core

set of constraints. We introduce a bounded version of the

constraints where we assume a user-supplied upper bound k

on the length of the variables. This allows us to employ a

SAT-based solution strategy without reducing the practical

expressiveness of the language.

The algorithm satisfies three important properties, whose

informal proof appears in the appendix.

1) Soundness. Whenever the algorithm terminates with an

assignment of values to string variables, the solution

is consistent with the input constraints.

2) Bound-k completeness. If there exists a solution for

the string variables where all strings have length k or

less, then our algorithm finds one such solution.

3) Termination. The algorithm requires only a finite num-

ber of steps (a function of the bound) for any input.

The solver translates constraints on the contents of strings

into bit-vector constraints that can be solved with a SAT-

based SMT solver. For this purpose, the solver translates

each input string into a sequence of n-bit integers (n = 8 in

the current implementation). Each string variable S also has

an associated integer variable LS representing its length. A

single string is converted to a bit-vector by concatenating

the binary representations of each character. Then, the bit-

vectors representing each string are themselves concatenated

into a single long bit-vector. (The order in which the

strings are concatenated into the long vector reflects the

concatenation constraints, as detailed in step 1 below.) The

solver passes the constraints over this bit vector to a SMT

(satisfiability modulo theories) decision procedure for the

theory of bit vectors, STP [10] in our implementation.

Informally, it is convenient to refer to the combined bit

vector as if it were an array indexed by character offsets, but

we do not use STP’s theory of arrays, and character offsets

are multiplied by n to give bit offsets before producing the

final constraints.



Input: C : constraint list
Output: (IsSat : bool, Solutions : string list)
G← BuildConcatGraph(C);
(C′, StrOrderMap)← DecideOrder(G);
C ← C ∪ C′;
FailLenDB : length assignment list← ∅;
while true do

(X, lengths)← SolveLengths(C,FailLenDB);
if (X = UNSAT) then

print “Unsatisfiable”;
halt(false, ∅);

end

Final : bitvector constraints;
Final← CreateBVConstraints(StrOrderMap, C, lengths);
(Result,BVSolutions)← BVSolver(Final);
if (Result = SAT) then

print “Satisfiable”;
printSolutions(BVSolutions, lengths, StrOrderMap);
halt(true,BVsToStrings(BVSolutions));

end

else
FailLenDB← FailLenDB ∪ lengths;

end

end

Figure 4: Algorithm for solving the core constraints.

Our algorithm is shown in Figure 4. At a high level,

it has three steps. First, it translates string concatenation

constraints into a layout of variables (with overlap) in the

final character array mentioned above. Second, it extracts

integer constraints on the lengths of strings and finds a

satisfying length assignment using the SMT solver. Finally,

given a position and length for each string, the solver

translates the constraints on the contents of each string into

bit-vector constraints and checks if they are satisfiable.

In general, because of the interaction of length constraints

and regular expressions, the length assignment chosen in step

2 might not correspond to satisfiable contents constraints,

even when a different length assignment would. So if step 3

fails to find a satisfying assignment, the algorithm returns to

step 2 to generate a new length assignment (distinct from any

tried previously). Steps 2 and 3 repeat until the solver finds

a satisfying assignment, or it has tried all possible length

assignments (up to the length bound k).

Step 1: Translating concatenation constraints.. The intu-

ition behind Kudzu’s handling of concatenation constraints

is that for a constraint S1 = S2 ◦ S3, it would be sufficient

to ensure that S2 comes immediately before S3 in the final

character array, and to lay out S1 as overlapping with S2

and S3 (so that S1 begins at the same character as S2 and

ends at the same character as S3). This overlapping layout

also has the advantage of reducing the total length of bit-

vectors required. Each concatenation constraint suggests an

ordering relation among the string variables, but it might

not be possible to satisfy all such ordering constraints

simultaneously.

To systematically choose an ordering, the solver builds

S1

S2 S3

S4 S5

S6

S7

L

L L

R

R R(1,1)

(2,2) (3,3) (4,4)

(3,4)(2,3)

(1,3)

S1 = S2 . S3

S3 = S4 . S5

S6 = S5 . S7

INPUT CONCAT CONSTRAINTS

Figure 5: A sample concat graph for a set of concatenation

constraints. The relative ordering of the strings in the final

character array is shown as start and end positions in

parentheses alongside each node.

a graph of concatenation constraints (a concat graph for

short). The graph has a node for each string variable, and for

each constraint S1 = S2◦S3, S2 and S3 are the left and right

children (respectively) of S1. An example of such a graph is

shown in Figure 5. Without loss of generality, we can assume

that the graph is acyclic: if there is a cycle from S1 to S2

to S3 . . . back to S1, then S1= S2 ◦ S3 ◦ · · · ◦ S1 (or some

other order), so all the variables other than S1 must be the

empty string, and can be removed from the constraints. (In

our applications the constraints will in any case be acyclic by

construction.) Given this graph, the algorithm then chooses

the relative ordering of the strings in the character array by

assigning start and end positions to each node with a post-

order traversal of the graph. (In Figure 5, these positions are

shown in parentheses next to each node.)

For the layout generated by the algorithm to be correct, the

concat graph must be a DAG in which each internal node

has exactly two children, and those children are adjacent

in the layout. (This implies that the graph is planar.) The

graph may not have these properties at construction; for

instance, Figure 6 gives a set of example constraints with

contradictory ordering requirements: S2 cannot be simulta-

neously to the left and to the right of S3. The algorithm

resolves such requirements by duplicating a subtree of the

graph (for instance as shown in the right half of Figure 6).

To maintain the correct semantics, the algorithm adds string

equality constraints to ensure that any duplicated strings

have the same contents as the originals. The algorithm

performs duplications to ensure that the graph satisfies the

correctness invariant, but our current algorithm does not

attempt to perform the minimal number of copies (for

instance, in Figure 6 it would suffice to copy either only

S2 or only S3), which in our experience has not hurt the

solver’s performance.

Step 2: Finding a satisfiable length assignment. Each

string variable S has an associated length variable LS . Each

core string constraint implies a corresponding constraint

on the lengths of the strings, as detailed in Table I. For

the regular expression containment constraint (S1 ∈ R),

the set of possible lengths is an ultimately periodic set:



S1

S2 S3

S4

L LR R

S1

S2 S3

S4

L LR R

S3_COPY S2_COPY

COPY CREATION

(1,1) (2,2) (3,3) (4,4)

(3,4)(1,2)

S2 = S2_COPY

S3 = S3_COPY

NEW CONSTRAINTS

DUE TO COPY CREATION

S1 = S2 . S3

S4 = S3 . S2

INPUT CONCAT CONSTRAINTS

Figure 6: A set of concat constraints with contradictory

ordering requirements. Nodes are duplicated to resolve the

contradiction.

whether a length is possible depends only on its remainder

when divided by a fixed period, except for a finite set of

exceptions. (Yu et al. use the equivalent concept of a semi-

linear set in a conservative automaton-based approach [33].)

The details of computing this set are covered in the lit-

erature [23]; we note that such sets can be conveniently

represented with our SMT solver since it supports a modulus

operation. At each iteration of step 2, the solver conjoins

the length constraints corresponding to all of the original

string constraints, along with a constraint to rule out each

length assignment that had previously been tried, and passes

this formula to the SMT solver. If it returns a satisfying

assignment, it represents a new length assignment to try;

if the constraint is unsatisfiable, then so were the original

string constraints.

Core Constraint Implication on lengths

S1 = S2 ◦ S3 LS1
= LS2

+ LS3

S1 ∈ R LS1
∈ LengthSet(R)

S1 = S2 LS1
= LS2

length(S1) ⋄ i LS1
⋄ i

length(S1) ⋄ length(S2) LS1
⋄ LS2

Table I: Length constraints implied by core string con-

straints, where LS is the length of a string S, and ⋄ ranges

over the operators {<,≤,=,≥,>}.

It is not necessary for correctness that the length abstrac-

tion performed by the solver be precise, but determining

precise length bounds improves performance by avoiding

wasted iterations. In the complete system, the integer con-

straints over lengths are solved together with integer con-

straints arising directly from the original program, discussed

in Section VI. In our experience it is important for good

performance to solve these two sets of integer constraints

together. The two sets of constraints may be interrelated,

and solving them together prevents the solver from wasting

time exploring solutions that satisfy one set but not the other.

Step 3: Encoding as bitvectors. Given the array layout and

lengths computed in steps 1 and 2, the remaining constraints

over the contents of strings can be expressed as constraints

over fixed-size bit-vectors. String equality translates directly

into bit-vector equality. For the encoding of regular expres-

sion constraints, we reuse part of the implementation of

the HAMPI tool [18]. At a high-level, the translation first

unrolls uses of the Kleene star ∗ in a regular expression

into a finite number of repetitions (never more than the

string length). Next, where the regular expression has con-

catenation, HAMPI determines all possible combinations of

lengths that sum to the total length, and instantiates each as a

conjunction of constraints. Along with the alternations that

appeared in the original regular expression, each of these

conjunctions also represents an alternative way in which the

regular expression could match the string. To complete the

translation, the choice between all of these alternatives is

represented with a disjunction. (See [18] for a more detailed

explanation and some optimizations.)

HAMPI supports only a single, fixed-length input, so we

invoke it repeatedly to translate each constraint between a

regular expression and a string into an STP formula. We then

combine each of these translations with our translations of

other string contents constraints (e.g., string equality), and

conjoin all of these constraints so that they apply to the

same single long character array. It is this single combined

formula that we pass to the SMT solver (STP) to find a

satisfying assignment.

VI. REDUCING JAVASCRIPT TO STRING CONSTRAINTS

In this section we describe our tool’s translation from

JavaScript to the language of our constraint solver, focusing

on the treatment of string operations. We start by giving the

full constraint language the solver supports, then describe

our general approach to modeling string operations, our use

of concrete values from the dynamic trace, and the process of

translating real regular expressions into textbook-style ones.

Full constraint language. The core constraint language

presented in Section IV captures the essence of our solving

approach, but it excludes several features for simplicity, most

notably integer constraints. The full constraint language sup-

ported by our solver supports values of string, integer, and

boolean types, and its grammar is given in Figure 8, along

with its type system in Figure 7. The additional constraints

are solved at step 2 of the string solution procedure, together

with the integer constraints on the lengths of strings. To

match common JavaScript implementations (which reserve

a bit as a type tag), we model integers as 31-bit signed bit-

vectors in our SMT solver, which supports all the integer

operations that JavaScript does. The solver replaces each

toString constraint with the appropriate string once a

value for its argument is selected: for instance, if i is given

the value 12, toString(i) is replaced with “12”.

JavaScript string operations. JavaScript has a large library

of string operations, and we do not aim to support every

operation, or the full generality of their behavior. Beyond the

engineering challenge of building such a complete transla-

tion, having very complex symbolic translations for common

operators would likely cause the system to bog down, and



τ ::= string | int | bool
ConstRegex ::= Regex | CapturedBrack(R, i) |

BetweenCapBrack(R, i, j)

Figure 7: Type system for the full constraint language
S1 : string = (S2 : string) ◦ (S3 : string) ◦ · · ·

I1 : int = length(S : string)
S1 : string ∈ R : ConstRegex
S1 : string /∈ R : ConstRegex

I1 : int = (I2 : int) {+,−, ·, /} (I3 : int)
B1 : bool = (A1 : τ) {=, 6=} (A2 : τ)
B1 : bool = (I1 : int) {<,≤,≥, >} (I2 : int)
B1 : bool = ¬(B2 : bool)
B1 : bool = (B1 : bool) {∧,∨} (B2 : bool)

S1 : string = toString(I1 : int)

Figure 8: Grammar and types for the full constraint

language including operations on strings, integers, and

booleans.

function validate (input) {

//input = ’{"action":"","val":""}’;

mustMatch = ’{]:],]:]}’;

re1 =/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g;

re2 =/"[ˆ"\\\n\r]*"|true|false|null|

-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g;

re3 = /(?:ˆ|:|,)(?:\s*\[)+/g;

rep1 = str.replace(re1, "@");

rep2 = rep1.replace(re2, "]");

rep3 = rep2.replace(re3, "");

if(rep3==mustMatch) { eval(input); return true; }

return false; }

Figure 9: Example of a regular-expression-based validation

check, adapted from a real-world JavaScript application. This

illustrates the complexity of real regular expression syntax.

the generality would usually be wasted. Instead, our choice

has been to model the string operations that occur commonly

in web applications, and the core aspects of their behavior.

For other operations and behavior aspects our tool uses

values from the original execution trace (described further

below), so that they are accurate with respect to the original

execution even if the tool cannot reason symbolically about

how they might change on modified executions. The detailed

translation from several common operators (a subset of those

supported by our implementation) to our constraint language

is shown in Table II.

Using dynamic information. One of the benefits of dy-

namic symbolic execution is that it provides the flexibil-

ity to choose between symbolic values (which introduce

generality) and concrete values (which are less general,

but guaranteed to be precise) to control the scope of the

search process. Our tool’s handling of string constraints

takes advantage of concrete values from the dynamic traces

in several ways. An example is string replace, which

is often used in sanitization to transform unsafe characters

into safe ones. Our translation uses a concrete value for

the number of occurrences of the searched-for pattern: if

a pattern was replaced six times in the original run, the

tool will search for other inputs in which the pattern occurs

six times. This sacrifices some generality (for instance, if a

certain attack is only possible when the string appears seven

times). However, we believe this is a beneficial trade-off

since it allows our tool to analyze and find bugs in many uses

of replace. For comparison, most previous string con-

straint solvers do not support replace at all, and adding

a replace that applied to any number of occurrences of a

string (even limited to single-character strings) would make

our core constraint language undecidable in the unbounded

case [6].

Regular expressions in practice. The “regular expressions”

supported by languages like JavaScript have many more

features than the typical definition given in a computability

textbook (or Figure 2). Figure 9 shows an example (adapted

from a real web site) of one of many regular expressions

Kudzu must deal with. Kudzu handles a majority of the

syntax for regular expressions in JavaScript, which includes

support for (possibly negated) character classes, escaped

sequences, repetition operators ({n}/?/*/+/) and sub-

match extraction using capturing parentheses. Kudzu keeps

track of the nesting of capturing parentheses, so that it

can express the relation between the input string and the

parts of it that match the captured groups (as shown in

Table II). Kudzu does not currently support back-references

(they are strictly more expressive than true regular expres-

sions), though if we see a need in the future, many uses

of back-references could be translated using (non-regular)

concatenation constraints.

VII. EXPERIMENTAL EVALUATION

We have built a full-implementation of Kudzu using the

WebKit browser, with 650, 7430 and 2200 lines of code in

the path constraint extraction component, constraint solver,

and GUI explorer component, respectively. The system is

written in a mixture of C++, Ruby, and OCaml languages.

We evaluate Kudzu with three objectives. One objective

is to determine whether Kudzu is practically effective in

exploring the execution space of real-world applications and

uncovering new code. The second objective is to determine

the effectiveness of Kudzu as a stand-alone vulnerability dis-

covery tool — whether Kudzu can automatically find client-

side code injection vulnerabilities and prune away false

reports. Finally, we measure the efficiency of the constraint

solver. Our evaluation results are promising, showing that

Kudzu is a powerful system that finds previously unknown

vulnerabilities in real-world applications fully automatically.

A. Experiment Setup

We select 18 subject applications consisting of popular

iGoogle gadgets and AJAX applications, as these were

studied by our previous tool FLAX [27]. FLAX assumes

availability of an external (manually developed) test suite to

seed its testing; in contrast, Kudzu automatically generates

a much more comprehensive test suite and finds the points
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Figure 10: Distribution of string operations in our subject

applications.

of vulnerability without requiring any external test harness

a priori. Further, in our experiments Kudzu discovers 2 new

vulnerabilities within a few hours of testing which were

missed by the FLAX because of its lack of coverage. In

addition, as we show later in this section, many of the

generated constraints are highly complex and not suitable

for manual inspection or fuzzing, whereas Kudzu either

asserts the safety of the validation checks or finds exploits

for vulnerabilities in one iteration as opposed to many rounds

of random testing.

To test each subject application, we seed the system with

the URL of the application. For the gadgets, the URLs are

the same as those used by iGoogle page to embed the gadget.

We configure Kudzu to give a pre-prepared username and

login password for applications that required authentication.

We report the results for running each application under

Kudzu, capping the testing time to a maximum of 6 hours

for each application. All tests ran on a Ubuntu 9.10 Linux

workstation with 2.2 GHz Intel dual-core processors and 2

GB of RAM.

B. Results

Table III presents the final results of testing the subject

applications. The summary of our evaluation highlights

three features of Kudzu: (a) it automatically discovers new

program paths in real applications, significantly enhancing

code coverage; (b) it finds 2 client-side code injection in

the wild and several in applications that were known to

contain vulnerabilities; and (c) Kudzu significantly prunes

away false positives, successfully discarding cases that do

employ sufficient validation checks.

Characteristics of string operations in our applications.

Constraints arising from our applications have an average

of 63 JavaScript string operations, while the remaining

are boolean, logical and arithmetic constraints. Figure 10

groups the observed string operations by similarity. The

Application # of new Initial / Final Bug
inputs Code Coverage found

Academia 20 30.27 / 76.47% X

AJAXIm 15 49.58 / 77.67% X

FaceBook Chat 54 26.85 / 76.84% -

ParseUri 13 53.90 / 86.10% X

Plaxo 31 5.72 / 76.43% X

AskAWord 10 29.30 / 67.95 % X

Birthday Reminder 27 59.47 / 73.94% -

Block Notes 457 65.06 / 71.50 % X

Calorie Watcher 16 64.54 / 73.53% -

Expenses Manager 133 61.09 / 76.56% -

Listy 19 65.31 / 79.73% X

Notes LP 25 46.62 / 76.67% -

Progress Bar 12 63.60 / 75.09% -

Simple Calculator 1 46.96 / 80.52% X

Todo List 15 72.51 / 86.41% X

TVGuide 6 30.39 / 75.13% X

Word Monkey 20 14.84 / 75.36% X

Zip Code Gas 11 59.05 / 74.28% -

Average 49 46.95 / 76.68% 11

Table III: The top 5 applications are AJAX applications,

while the rest are Google/IG gadget applications. Column

2 reports the number of distinct new inputs generated, and

column 3 reports the increase in code coverage from the

initial run to and the final run.

largest fraction are operations like indexOf that take string

inputs and return an integer, which motivate the need for

a solver that reasons about integers and strings simulta-

neously. A significant fraction of the operations, including

subtring, split and replace, implicitly give rise

to new strings from the original one, thereby giving rise

to constraints involving multiple string variables. Of the

match, split and replace operations, 31% are regular

expression based. Over 33% of the regular expressions have

one or more capturing parentheses. Capturing parentheses in

regular expression based match operations lead to constraints

involving multiple string variables, similar to operations such

as split.

These characteristics show that a significant fraction of the

string constraints arising in our target applications require a

solver that can reason about multiple string variables. We

empirically see examples of complex regular expressions

as well as concatenation operations, which stresses the

need for our solver that handles both word equations and

regular expression constraints. Prior to this work, off-the-

shelf solvers did not support word equations and regular

expressions simultaneously.

Vulnerability Discovery. Kudzu is able to find client-side

code injection vulnerabilities in 11 of the applications tested.

2 of these were not known prior to these experiments

and were missed by FLAX. One of them is on a social-

networking application (http://plaxo.com) that was

missed by our FLAX tool because the vulnerability exists

on a page linked several clicks away from the initial post-



0

1

2

3

4

5

6
x 10

4

as
k−

a−
w
or

d

bi
rth

da
y

bl
oc

k−
no

te
s

ca
lo
rie

−w
at

ch
er

lis
ty

ex
pe

ns
e−

m
an

ag
e

no
te

s−
la
b

pr
og

re
ss

−b
ar

ca
lc
ul
at

or

to
do

−l
is
t

tv
−g

ui
de

w
or

d−
m

on
ke

y

zi
pc

od
e−

ga
s

ac
ad

em
ia

aj
ax

im

fa
ce

bo
ok

−c
ha

t

pa
rs

eU
ri

pl
ax

o

N
u
m

b
e
r 

o
f 
in

s
tr

u
c
ti
o
n
s ExecutedCompiled

Figure 11: Kudzu code coverage improvements over the

testing period. For each experiment, the right bar shows the

increase in the executed code from the initial run to total

code executed. The left bar shows the increase in the code

compiled from initial run to the total code compiled in the

entire test period.

authentication page. The vulnerable code is executed only

as part of a feature in which a user sets focus on a text

box and uses it to update his or her profile. This is one

of the many different ways to update the profile that the

application provides. Kudzu found that only one of these

ways resulted in a client-side code injection vulnerability,

while the rest were safe. In this particular functionality,

the application fails to properly validate a string from a

postMessage event before using it in an eval operation.

The application implicitly expects to receive this message

from a window hosted at a sub-domain of facebook.com;

however, Kudzu automatically determines that any web

principal could inject any data string matching the format

FB_msg:.*{.*}. This subsequently results in code injec-

tion because the vulnerable application fails to validate the

origin of the sender and the structure of JSON string before

its use in eval.

The second new vulnerability was found in a ToDo

Google/IG gadget. Similar to the previous case, the vul-

nerability becomes reachable only when a specific value is

selected from a dropdown box. This interaction is among

many that the gadget provides and we believe that Kudzu’s

automatic exploration is the key to discovering this use case.

In several other cases, such as AjaxIM, the vulnerable code

is executed only after several events are executed after initial

sign-in page—Kudzu automatically reaches them during its

exploration.

Kudzu did not find vulnerabilities in only one case that

FLAX reported a bug. This is because the vulnerability

was patched in the time period between our experimental
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Figure 12: Benefits from symbolic execution alone (dark

bars) vs. complete Kudzu (light bars). For each experiment,

the right bar shows the increase in the total executed code

when the event-space exploration is also turned on. The left

bar shows the observed increase in the code compiled when

the event-space exploration is turned on.

evaluation of FLAX and Kudzu.

Code and Event-space Coverage. Table III shows the

code coverage by executing the initial URL, and the final

coverage after the test period. Measuring code coverage in

a dynamically compiled language is challenging because all

the application code is not known prior to the experiments.

In our experiments, we measured the total code compiled

during our experiments and the total code executed 3.

Table III shows an average improvement of over 29% in

code coverage. The coverage varies significantly depending

on the application. Figure 11 provides more detail. On

several large applications, such as Facebook Chat, AjaxIM,

and Plaxo, Kudzu discovers a lot of new code during testing.

Kudzu is able to concretely execute several code paths, as

shown by the increase in the right-side bars in Figure 11.

On the other less complex gadget applications, most of the

relevant code is observed during compilation in the initial

run itself, leaving a relatively smaller amount of new code

for Kudzu to discover. We also manually analyzed the source

code of these applications and found that a large fraction of

their code branches were not dependent on data we treat as

untrusted.

To measure the benefits of symbolic execution alone, we

repeated the experiments with the event-space exploration

turned off during the test period and report the comparison

to full-featured Kudzu in Figure 12. We consistently observe

3One unit of code in our experiments is a JavaScript bytecode compiled
by the interpreter. To avoid counting the same bytecode across several runs,
we adopted a conservative counting scheme. We assigned a unique identifier
to each bytecode based on the source file name, source line number, line
offset and a hash of the code block (typically one function body) compiled.



Application # of initial # of total Total events
events fired events fired discovered

Academia 20 78 310

AJAXIm 72 481 988

FaceBook Chat 15 989 1354

ParseUri 5 16 17

Plaxo 88 381 688

AskAWord 2 8 11

Birthday Reminder 12 20 20

Block Notes 7 85 319

Calorie Watcher 14 18 22

Expenses Manager 10 107 1473

Listy 15 470 638

Notes LP 10 592 1034

Progress Bar 8 24 36

Simple Calculator 17 34 67

Todo List 8 26 61

TVGuide 17 946 1517

Word Monkey 3 10 22

Zip Code Gas 12 12 12

Average 18.61 238.72 477.17

Table IV: Event space Coverage: Column 2 and 3 show the

number of events fired in the first run and in total. The last

column shows the total events discovered during the testing.

that symbolic execution alone discovers and executes a

significant fraction of the application by itself. The event-

exploration combined with symbolic execution does perform

strictly better than symbolic execution in all but 3 cases. In a

majority of the cases, turning on the event-space exploration

significantly complements symbolic execution, especially

for the AJAX applications which have a significant GUI

component. In the 3 cases where improvements are not

significant, we found that the event exploration generally

either led to off-site navigations or the code executed could

be explored by symbolic execution alone. For example, in

the parseUri case, same code is executed by text-box input

as well as by clicking a button on the GUI.

Table IV shows the increase in number of events executed

by Kudzu from the initial run to the total at the end of test

period. These events include all keyboard and mouse events

which result in execution of event handlers, navigation,

form submissions and so on. We find that new events are

dynamically generated during one particular execution as

well as when new code is discovered. As a result, Kudzu

gradually discovers new events and was able to execute

approximately 50% of the events it observes during the

period of testing.

Effectiveness. Kudzu automatically generates a test suite of

49 new distinct inputs on average for an application in the

test period (shown in column 2 of table III).

In the exploitable cases we observed, Kudzu was able

to show the existence of a vulnerability with an attack

string once it reached the point of vulnerability. That is,

its constraint solver correctly determines the sufficiency or

insufficiency of validation checks in a single query without

manual intervention or undirected iteration. This eliminates

false positives significantly in practice. For instance, Kudzu

found that the Facebook web application has several uses of

postMessage data in eval constructs, but all uses were

correctly preceded by checks that assert that the origin of the

message is a domain ending in .facebook.com. In con-

trast, the vulnerability in Plaxo fails to check this and Kudzu

identifies the vulnerability the first time it reaches that point.

Some of the validation checks Kudzu deals with are quite

complex — Figure 9 shows an example which is simplified

from a real application. These examples are illustrative of

the need for automated reasoning tools, because checking

the sufficiency of such validation checks would be onerous

by hand and impractical by random fuzzing. Lastly, we point

out that like most other vulnerability discovery tools, Kudzu

can have false negatives because it may fail to cover code,

or because of overly strict attack grammars.

Constraint Solver Evaluation. Figure 13 shows the running

times for solving queries of various input constraint sizes.

Each constraint is a either a JavaScript string, arithmetic,

logical, or boolean operation. The sizes of the equations

varied from 1 to up to 250 constraints. The solver decides

satisfiability of the constraints typically under a second for

satisfiable cases. As expected, to assert unsatisfiability, the

solver often takes time varying from nearly a second to 50

seconds. The variation is large because in many cases the

solver asserts unsatisfiable by asserting the unsatisfiability

of length constraints, which is inexpensive because the

step of bit-vector encoding is avoided. In other cases, the

unsatisfiability results only when the solver determines the

unsatisfiability of bit-vector solutions.

Our solver requires only an upper bound on the lengths

of input variables, and is able to infer satisfiable lengths of

variables internally. In these experiments, we increase the

upper bound of the input variables from 10 to 100 characters

in steps of 20 each. If the solver asserts unsatisfiability

up to the length bound of 100, the constraints are deemed

unsatisfiable.

VIII. RELATED WORK

Kudzu is the first application of dynamic symbolic execu-

tion to client-side JavaScript. Here, we discuss some related

projects that have applied similar techniques to server-side

web applications, or have used different techniques to search

for JavaScript bugs. Finally, we summarize why we needed

to build a new string constraint solver.

Server-side analysis. JavaScript application code is similar

in some ways to server-side code (especially PHP); for

instance, both tend to make heavy use of string operations.

Several previous tools have demonstrated the use of sym-

bolic execution for finding SQL injection and reflected or

stored cross-site scripting attacks to code written in PHP

and Java [1], [19], [31]. However, JavaScript code usually
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Figure 13: The constraint solver’s running time (in seconds)

as a function of the size of the input constraints (in terms

of the number of symbolic JavaScript operations)

parses its own input, so JavaScript symbolic execution

requires more expressive constraints, specifically to relate

different strings that were previously part of a single string.

Additional challenges unique to JavaScript arise because

JavaScript programs take many different kinds of input,

some of which come via user interface events.

Like Kudzu, the Saner [2] tool for PHP aims to check

whether sanitization routines are sufficient, not just that they

are present. However their techniques are quite different:

they select paths and model transformations statically, then

perform testing to verify some vulnerabilities. Their def-

inition of sanitization covers only string transformations,

not validation checks involving branches, which occur fre-

quently in our applications.

Analysis frameworks for JavaScript. Several works have

recently applied static analysis to detect bugs in JavaScript

applications (e.g., [9], [12]). Static analysis is complemen-

tary to symbolic execution: if a static analysis is sound, an

absence of bug reports implies the absence of bugs, but static

analysis warnings may not be enough to let a developer

reproduce a failure, and in fact may be false positives.

FLAX uses taint-enhanced blackbox fuzzing to detect if

the JavaScript application employs sufficient validation or

not [27]; like Kudzu, it searches for inputs to trigger a

failure. However, FLAX requires an external test suite to

be able to reach the vulnerable code, whereas Kudzu gen-

erates a high-coverage test suite automatically. Also, FLAX

performs only black-box fuzz testing to find vulnerabilities,

while Kudzu’s use of a constraint solver allows it to reason

about possible vulnerabilities based on the analyzed code.

Crawljax is a recently developed tool for event-space

exploration of AJAX applications [24]. Specifically, Crawl-

jax builds a static representation of a Web 2.0 application

by clicking elements on the page and building a state

graph from the resulting transitions. Kudzu’s value space

exploration complements such GUI exploration techniques

and enables a more complete analysis of the application

using combined symbolic execution and GUI exploration.

String constraint solvers. String constraint solvers have

recently seen significant development, and practical tools

are beginning to become available, but as detailed in Sec-

tion IV-C, no previous solvers would be sufficient for

JavaScript, since they lack support for regular expres-

sions [3], [4], [7], string equality [14], or multiple vari-

ables [18], which are needed in combination to reason

about JavaScript input parsing. In concurrent work, Veanes

et al. give an approach based on automata and quantified

axioms to reduce regular expressions to the Z3 decision

procedure [29]. Combined with [4], this would provide

similar expressiveness to Kudzu.

IX. CONCLUSION

With the rapid growth of AJAX applications, JavaScript

code is becoming increasingly complex. In this regard,

security vulnerabilities and analysis of JavaScript code is

an important area of research. In this paper, we presented

the design of the first complete symbolic-execution based

system for exploring the execution space of JavaScript

programs. In making the system practical we addressed

challenges ranging from designing a more expressive lan-

guage for string constraints to implementing exploration and

replay of GUI events. We have implemented our ideas in

a tool called Kudzu. Given a URL for a web application,

Kudzu automatically generates a high-coverage test suite.

We have applied Kudzu to find client-side code injection

vulnerabilities and Kudzu finds 11 vulnerabilities (2 previ-

ously unknown) in live applications without producing false

positives.
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APPENDIX

A. Expressiveness

Each of the following constraint types allows new sets of

strings to be defined:

• The theory of just concatenation constraints v1 = v2◦v3

(plus constant strings) is equivalent to the theory of

word equations, which is known to be neither a subset

nor a superset of the theory of regular expressions in

terms of expressiveness [17]. For instance, the set of

strings that consist of a single string repeated {ww :
w ∈ Σ∗} can be easily expressed with a word equation,

but is not regular.

• Conversely, the regular languages expressed by regular

expressions include sets of strings that cannot be ex-

pressed solely with word equations. An example given

in [17] is the set of strings consisting of a and b over

http://ha.ckers.org/xss.html
http://webblaze.cs.berkeley.edu/2010/kaluza/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/xpath20/


a three-letter alphabet {a,b,c}, which is represented

by the regular expression (a|b)*.
• The constraint length(v1) = length(v2) also adds

expressiveness, since the language {u$v : |u| = |v|} is

not regular, and the relation of two strings having equal

length also can not be expressed in word equations for

any non-unary alphabet [17].

B. Complexity

The problem of deciding Kudzu’s core constraint language

is at least PSPACE-hard, which can be seen by adapting the

construction given by Hunt [15] to prove the same hardness

for the emptiness problem for regular expressions with an

intersection operator. The construction is a reduction from

the acceptance problem for a linearly-bounded automaton;

since it uses the intersection operator only at the top level

of the constructed expression, it can also be expressed

as a conjunction of regular expression constraints in our

language. (The best known algorithms for the word equation

problem are also in PSPACE [25], but the best known lower

bound for that fragment is only NP-hardness.)

On the upper bound side, the complexity of our deciding

our constraints is still an open problem. The fragment

consisting of word equations and length equalities is known

to be strictly more expressive that word equations alone [6],

[17], but its decidability has been mentioned as open by

several authors [4], [6], [22]. Our core constraint language

does not contain any features that obviously cause it to be

undecidable, but it is strictly more expressive than fragment

of word equations and length equalities, so its decidability

is also an open problem.

The potential difficulty of deciding the unbounded version

of our core constraint language (even PSPACE problems

are usually infeasible at scale) motivates our decision in the

practical system to search just for solutions using strings of

lengths bounded by a user-specified parameter. The bounded

version of the constraint decision problem is NP-complete

(where the size of the input is measured by the bound, for-

mally by specifying the bound in unary). The reduction from

SAT is immediate, since the constraint language includes

arbitrary boolean combinations, and the bounded language

is in NP because solutions (of size proportional to the bound)

can be checked in polynomial time using standard regular

expression matching algorithms.

C. Correctness

We discuss the correctness of our algorithm in terms of

soundness, completeness (up to the bound), and termination.

These properties build on the corresponding properties for

the underlying bit-vector solver and the translation from

regular expressions to bit-vectors, which have already been

established.

Concatenation constraints. The key invariant established

by the translation from concatenation constraints to an

adjacency ordering is that for each original constraint S1 =
S2 ◦ S3, the first length(S2) characters of S1 should be

constrained to be equal to the characters of S2, and similarly

between the remaining length(S3) characters of S1 and

S3. When the nodes are adjacent in the concatenation graph,

this holds because the characters are in fact the same char-

acters; when nodes are copied to resolve ordering conflicts,

the invariant holds because the copies are constrained to be

equal to the originals.

Length abstraction. The key property of the length con-

straints synthesized in step 2 is that they be a sound

abstraction of the possible lengths of strings that could

satisfy the constraints: for any strings that satisfy a string

constraint, their lengths must satisfy the corresponding

length constraint. It is not necessary for correctness that

the abstraction be precise (that every length correspond

to a possible string solution), though precision improves

the solver’s performance by pruning the search space of

lengths. For the concatenation, string equality, and length-

related constraints, the correctness of the length abstractions

is immediate. For a detailed discussion of the operation

LengthSet(R) we refer readers to [23].

Soundness. For soundness, suppose that the algorithm pro-

duces a solution that assigns string si with length li to each

string variable Si that appears in a constraint set. By the

soundness of the bit-vector solver, the solution corresponds

to an assignment of truth values to each string constraint in

the formula that gives the formula the boolean result true.

Let the constraint literals be a set which contains C for

each constraint C assigned true, and ¬C for each constraint

C assigned false. By the soundness of the bit-vector solver,

the lengths li are a correct solution to the length constraints,

so the length-related constraint literals will be satisfied.

By the soundness of the translation of regular expression

constraints and the bit-vector solver, si ∈ L(Ri) for each

constraint Si ∈ Ri, so each regular expression constraint

literal is satisfied. Finally, for concatenation and string

equality constraints, step 1 guaranteed that the corresponding

characters were either identified or constrained to be equal,

so by construction or by the soundness of the bit-vector

solver (respectively), their constraint literals will be satisfied.

Thus the assignment produced by the algorithm gives an

appropriate value to each constraint literal such that the

constraint formula is satisfied.

Bounded completeness. For bounded completeness, sup-

pose to the contrary that there exists a set of solu-

tion strings si with lengths li for a set of constraints,

but that the algorithm when run on those constraints

prints Unsatisfiable. Consider two cases, according to

whether the lengths li were ever returned by the procedure

SolveLengths during execution. If the lengths were returned

on some iteration j, then by the bounded completeness of

the regular expression translation, and the correctness of the



translation of string equality and concatenation constraints,

the bit-vector constraints for those lengths must be satisfiable

by the string values si. However, the algorithm could only

have printed Unsatisfiable if the bit-vector solver

found the bit-vector constraints unsatisfiable, contradicting

its completeness. On the other hand, suppose that the

lengths li were never returned by SolveLengths. Because

the program printed Unsatisfiable, the final call to

SolveLengths must have returned UNSAT when supplied

with a set of length constraints L, and some number of failed

length assignments not including the length assignment li.

By the soundness of the length abstraction, the lengths

li satisfy L, but since the li assignment satisfies L and

was not excluded, the completeness of the bit-vector solver

implies that it should have been returned by SolveLengths,

contradicting our assumption that it was never returned by

SolveLengths. Thus neither case is possible, so we reject

the assumption and conclude that if a solution exists, the

algorithm will not print Unsatisfiable.

Termination. For termination, only the main while loop

must be considered, since all of the subroutines are guaran-

teed to terminate. To see that the loop terminates, we observe

that the set FailLenDB of failed length assignments grows

on each iteration of the main loop, since when SolveLengths

gives SAT, it always returns a new length assignment distinct

from those previously in FailLenDB. On the other hand,

the length assignments returned by SolveLengths always

satisfy the length bounds in C. But because the length of

each string is a non-negative integer no greater than the

corresponding length bound, there are only finitely many

possible length assignments that satisfy the bounds. Thus

the correctness of SolveLengths and the fact that FailLenDB

grows monotonically together guarantee that SolveLengths

will eventually return UNSAT, causing the algorithm to

terminate.
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